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Deformations of Galois Representations

Fernando Q. Gouvéa

Introduction

These notes were prepared for a short graduate course which I was invited to
teach at the Park City Mathematics Institute in the summer of 1999. The topic is
the theory of deformations of Galois representations, which was created by Barry
Magzur and has become, especially after Wiles’ fundamental work on the modularity
conjecture for elliptic curves, an important number-theoretical tool. This revised
version of the notes includes several supplements, including three appendices. The
first, by Mark Dickinson, gives a proof of the existence of the universal deformation
that works directly from Grothendieck’s theorem instead of using the Schlessinger
criteria. The second, by Tom Weston, gives a detailed account of how to prove a
theorem of Flach mentioned in Lecture 5. The third, by Matthew Emerton, gives
an introduction to the theory of p-adic modular forms which is sketched very briefly
in Lecture 7. The second and third appendix are write-ups of talks given at PCMI.
I am grateful to all three authors for their permission to include their work in these
notes.

I have tried to sprinkle problems throughout the write-up. These are of various
kinds. Some simply ask the reader to fill in the details of an argument or to supply
the proof of a theorem; these are mostly straightforward, but keep in mind that
the notion of “straightforward” is highly dependent on each person’s background.
Other problems ask the reader to work out a specific example; I hope these will be
helpful in understanding the material. Some problems are open-ended suggestions
that the reader might want to investigate. A few problems ask questions whose
answers I do not know, but which seemed natural to me as I was preparing these
notes. Some of these are bound to be embarrassingly easy, while others may be
quite hard.
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The first six lectures form the core material for the course on deformations of
Galois representations. I have tried to make them a useful introduction to the sub-
ject. The last two lectures have a different character. The seventh is a broad survey
of how deformation theory interacts with the theory of modular forms, with special
focus on (various forms of) the issue of deciding which deformations are modular.
The last lecture is a brief account of the material in [100] and [62], describing the
construction of the “infinite fern” in the deformation space of a modular residual
representation. Due to this difference in style, the problems disappear when we get
to the last two lectures. (The last two lectures are in fact a sort of meta-problem:
fill in the details in this account.)

Several other accounts of the basic theory are available, and all were enormously
useful (and at times intimidating!) as I was preparing my own notes. First of
all, one should mention Mazur’s three excellent (and very different) accounts of
the theory: his original paper [97], his more elementary account in [100] (which
puts special emphasis on modular representations), and the expository account
[101] in the proceedings [33] of the Boston University conference on Fermat’s Last
Theorem. In the same volume one also finds the articles [36], which gives an
alternative construction of the universal deformation, and [32], which looks closely
at the theory of flat deformations. Another extended account of the theory is
the unpublished book [42] by Charles Doran and Siman Wong. Shorter surveys
include Mazur’s own summary in [100], my survey in [60], and portions of the
various surveys of the proof of Fermat’s Last Theorem, such as [119], [34], and
[114]. These are all worth a look.

I would like to thank the organizers of the 1999 Park City Mathematics Institute
for their invitation to teach this course. Thanks also to the several people who made
suggestions for this revised version, including Brian Conrad, Ralph Greenberg,
Armand Brumer, and Blair Kelly. Special thanks to Mark Dickinson, my teaching
assistant at PCMI, who made extensive suggestions, handled problem sessions, and
saw to it that copies were made and distributed.

FERNANDO GOUVEA
DEPARTMENT OF MATHEMATICS
CoLBY COLLEGE

WATERVILLE, ME 04901
fqgouvea@colby.edu



LECTURE 1
Galois Groups and Their Representations

Our main concern throughout these lectures will be to study the representations
of the absolute Galois group of a field. More often than not, the field in question
will be Q, the field of rational numbers, but we will also need to consider number
fields (finite extensions of Q), their various completions, and finite fields. So we’ll
start by saying some general things about Galois groups of infinite extensions, then
quickly specialize to the cases that interest us. We will then try to collect what is
known about the groups we want to study. This will give this lecture something of
the nature of a survey; we have tried to add details only when they are not easily
found in the standard references.

Galois groups of infinite algebraic extensions

In this section we give a very brief sketch of the Galois theory of infinite algebraic
extensions. References for this material are [112, Chapter 1] and [109, Chapter
V).

Let K be a perfect field, and let F be a (finite or infinite) normal extension of
K. The Galois group

G(F/K) = Gal(F/K)

is defined, as usual, to consist of all automorphisms of F' which induce the identity
on K. When F/K is infinite, this is an infinite group. In the special case in which
F = K is an algebraic closure of K, we will call this the absolute Galois group of
K and we will denote it by G k.

For finite extensions, the Galois correspondence nicely matches up subgroups
of the Galois group with subextensions. The main difficulty with which we have to
deal in this section is the fact that the naive generalization of this correspondence
does not work for infinite extensions. The easiest way to see this is to consider an
example that will keep coming up: the absolute Galois group of a finite field.

Example. Let p be a prime number, K = [, be the finite field with p elements, and
let F' =T, be an algebraic closure. The Frobenius automorphism ¢ = ¢, : F — F
(which we will often simply call “the Frobenius” or “the Frobenius at p”) is defined
by ¢(xz) = zP. Recall that for each n there is only one extension of F, inside F
which has degree n; this extension is fixed by ¢". Let Z C GF, be the subgroup
generated by ¢. It is easy to see that Z is an infinite cyclic group and that its

3
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fixed subfield is [,. Galois theory for extensions of finite degree would then lead
us to expect that Z = GF,, but this is very far from being true in our case. To
see this, choose any sequence of integers a, such that we have a, = a,,, (mod m)
whenever m|n. We define an automorphism ¢ of F by requiring ¢|r,, = ¢*». The
conditions on the sequence a,, mean that these definitions are compatible. Since
every element of F belongs to some subfield of finite degree over F,, we see that
this defines an automorphism ) € G,. But ¢ € Z if and only if the sequence a,, is
constant, i.e., if there is some integer a such that a,, = a for all n. Since there are
many non-constant sequences of this type, we have shown that Gf, is in fact much
larger than Z.

Problem 1.1. Check the details in this construction. Specifically, show that many
non-constant sequences {a,} exist and that the conditions defining ¢ are indeed com-
patible.

Problem 1.2. How big is GFP? For example, is it a countable set?

As usual, the way to fix the problem is to introduce a topology on our infinite
Galois group, and then to show that the Galois correspondence will work provided
we work only with closed subgroups. The definition of the topology is quite natural,
basically, we need something that reduces to the discrete topology when F/K is
finite and which selects the right subgroups for the correspondence to work.

Here is the formal definition. First of all, we’ll say an extension of fields is a
Galois extension if it is algebraic, normal, and separable. (In what follows, we will
always assume that the base field K is perfect, so that we need not worry about
separability.)

Definition 1.1. Let F//K be a (finite or infinite) Galois extension. For each finite
Galois subextension K'/K, consider the Galois group G(K'/K), and whenever we
have two finite subextensions K' C K" consider the homomorphism

G(K"/K) — G(K'/K)

given by restriction. This whole package defines an inverse system of groups, and
we define the Galois group of F over K to be the inverse limit'

G(F/K) = lim G(K'/K)

K'/K
with its natural profinite topology.

This definition nicely generalizes the example above; after all, an element of the
inverse limit is exactly given by an indexed set {0k} such that ox € G(K'/K) and
such that the various og are compatible under restriction, which is very similar to
the way we constructed the sequence {a,}. The main thing we have added is the
topology. It’s worth noticing that if F' is actually a finite extension of K, then the
group is finite and the topology is just the discrete topology.

Problem 1.3. Let F//K be an infinite Galois extension, and let G be the group of
automorphisms of F' which induce the identity on K. For each finite Galois subextension
K'/K, let G(F/K') denote the normal subgroup of G consisting of all automorphisms
which induce the identity on K'. Define a topology on G by defining a basis of
neighborhoods of each o € GG to be the set of all cosets cG(F/K"), where K’ runs

1See the complements to lecture 1 for a quick overview of inverse limits.
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through all finite Galois extensions of K. Show that this yields the same group and the
same topology as in the definition above.

Problem 1.4. Show that G(F/K) is Hausdorff, compact, and totally disconnected.

Problem 1.5. Let G be a topological group. Show that all open subgroups of G
are also closed. If G is compact, show that all open subgroups are of finite index in
G. Conversely, show that a closed subgroup of finite index in a topological group G is
open.

Groups that are inverse limits of a projective system of finite groups are called
profinite. As this discussion suggests, they appear quite naturally in arithmetical
and algebraic contexts. One can often show that profinite groups have properties
that are very close to the properties of finite groups. There will be several examples
in what follows. A quick overview of profinite groups appears in the complements
to lecture 1. For more information, see [109, Appendix C], [139] (or its English
translation [140]), and [143].)

The immediate result of topologizing our group is that we now get a good
Galois correspondence:

Theorem 1.1. Let F/K be a (finite or infinite) Galois extension. The map
K'— G(F/K'")
defines a bijective inclusion-reversing correspondence between subextensions K'/K
and closed subgroups of G(F/K). The inverse correspondence is given by
Hw— FH,

where, as usual, FH denotes the subfield of F consisting of those elements which
are fixed by every element of H.

In particular, the open subgroups (which are also closed and of finite index, see
above) correspond to the finite subextensions.
Problem 1.6. Prove the theorem.

Problem 1.7. Consider the field F C Q which is the compositum of all quadratic
extensions of Q. Describe the Galois group G(F/Q) in as much detail as you can.
Show that it has many subgroups of finite index which are not closed. (In fact, most
of its subgroups of finite index are not closed!)
Problem 1.8. Let G; and G be profinite groups. Show that a continuous injective
homomorphism G; — G is an isomorphism from G onto a closed subgroup of Gs.
Problem 1.9. Show that every profinite group arises as a Galois group for some Galois
extension.

Let’s reconsider our initial example, and then take a brief look at the other
main examples we’ll need to consider.

Example. Let F be an algebraic closure of E,, and consider subfields K C F. Then
we know that there is a unique finite subextension K/F, of degree n, which we call
Fpn , and we have

G(Fyn [F,) = Z./nZ,

where the isomorphism is obtained by mapping the Frobenius element ¢ to 1. The
argument above shows directly that G, = 7Z, where Z is the procyclic group

Z=1imZ/nZ,
n
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where the homomorphisms Z/nZ — Z /mZ used to obtain the limit are defined,
whenever m|n, to be simply reduction modulo m. The set Z which we considered
above, consisting of all the integral powers of ¢, is a dense subset of Gg,. Hence we
say that ¢ topologically generates Gr,.

Problem 1.10. Show that the natural map 7 —s» H Zp is an isomorphism.

p
Problem 1.11. Show that Z, (thought of as an additive group) is also a profinite
group topologically generated by a single element, but is not isomorphic to Z.

The example of the absolute Galois group of a finite field is one for which we
can get a precise description. This is far from being the case for the other two
groups that will be at the center of our attention: the absolute Galois groups of @,
and of Q. We will consider both groups more carefully in the next section.

Before we go on to that, let’s set up one more bit of the abstract theory.

Definition 1.2. Let G be a topological group. We define a G-module to be an
abelian topological group M together with a continuous map

GxM—M
(o0,m) — om

which satisfies the following conditions (where we write the operation on M addi-
tively):
i. Im =m, for all m € M,
. o(m +n) =om+on, for all c € G and m,n € M, and
iii. (om)m = o(tm), for all 0,7 € G and all m € M.

The most common situation is when G is a profinite group and M has the
discrete topology. In this case, the condition of continuity can be translated to a
simple group-theoretic condition:

Problem 1.12. Suppose G is profinite and M has the discrete topology. For each
subgroup H C G, write MH for the set of elements of M which are fixed by every
element of H. Show that the map G x M — M is continuous if and only if we have

M= )M,
H

where H runs through all the open subgroups of G.

Problem 1.13. Let A be a topological ring whose undelying abelian group is profinite.
We say that A is a profinite ring.

i. Prove that the natural map of topological rings

A — limA/T
T

is an isomorphism, where I runs through the closed ideals of finite index in A.
(To begin with, you need to show that if A # 0 such proper closed ideals I C A
of finite index do exist.)

ii. Let A be a complete noetherian local ring, and give A its “natural” topology,
that is, the topology defined by the powers of its maximal ideal. Show that A is
profinite if and only if its residue field is finite.

iii. Give an example of a profinite local ring which is not noetherian.
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Problem 1.14. Let A be a profinite ring and let M be a finite free A-module with a
continuous action of a profinite group G. For each open subgroup H C G, let M be
defined as above. Show that the natural map

M — lim M7
H

is a topological isomorphism. How does this relate to problem 1.127

Given a G-module M, we can define the cohomology groups H (G, M) as in
[152]. The case of interest for us, of course, will be when G is a Galois group. In
addition to [152], see also [156] for a short introduction to Galois Cohomology.
The books [135], [139], [140], and [111] contain more extensive treatments, the
last being especially complete.

We conclude this section with two problems that deal with an idea that will
later be very important for us: the notion of a pro-p-group.

Problem 1.15. Let p be a prime. A profinite group G is called a pro-p-group if
every finite quotient of G is a p-group. (For example, Z,, as an additive group, is a
pro-p-group.) Let I'5(Z,) denote the kernel of the reduction mod p map

GL(Z,) — GLs(E,).

Show that I'y(Z,,) is a pro-p-group.
Problem 1.16. Let G be a profinite group and p be a prime. Define another profinite
group G by

G :@G/H’
H

where H runs through the open normal subgroups of G whose index in G is a power

of p.

i. Show that there is a canonical continuous group homomorphism 7 : G — G(®)
and that any continuous group homomorphism from G to a finite discrete p-group
factors through .

ji. Let G = Z. What is G(»)?

iii. 1s G'P) a quotient of G?

iv. Formulate and prove a universal property of G —s GP) in the category of

profinite groups.

The Galois group of Q

The Galois group which will mainly concern us is Gg = G(Q/Q), the absolute
Galois group of Q. In this section we gather together some basic information about
this group (and also try to point out that there is much about it that is still quite
mysterious). Much of what we do would also apply to the Galois group of a general
number field. All of this is to be found in standard references on algebraic number
theory; our summary is inspired by the material in [101], [34, Section 2.1] and
[112, Chapter 1].

Let’s begin with what one might call the “local structure” of Gg. For each prime
number p, there is a canonical inclusion of Q into its completion Q,. When we go
to algebraic closures, however, there are many different inclusions Q —» @p (this
is equivalent to saying that there are many ways to extend the p-adic valuation on
Q to Q). Once we choose such an embedding, we get an inclusion of Galois groups
Gg, = Gg. Changing the embedding changes this inclusion by conjugation. The
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image of G, is called a decomposition group at p. We will usually want to identify
G, with its image in G, but when we do so we will have to bear in mind that
the picture we have in mind is unique only up to conjugation.

We know quite a bit about the structure of algebraic extensions of Q,. First
of all, there is a maximal unramified extension Q)*, and we know that

G(Q)/Q) = G(F,/E),

where T, is the residue field of the valuation ring of @" (which is an algebraic
closure of E,). The restriction map then gives a surjective homomorphism

G(Q,/Q) — G(Fp/E).

The kernel of this homomorphism is called the inertia group (at p) and we will
denote it by I,. Recall that G(F,/E,) is topologically generated by the Frobenius
automorphism ¢,. We will call any lift of ¢, to G, a Frobenius automorphism,
and we will confuse things even further by using the same notation ¢, for any such
element. (To be fair, we usually do this in contexts where we are looking at the
image of Gp, via a map whose kernel contains I,,. In this case, ¢, is any of many
elements in a coset of I, but the image of ¢, is well-defined.)

The structure of the inertia group I, is somewhat more complicated. It has a
large normal Sylow pro-p-subgroup, which we denote by W, and which is known
as the wild inertia group. The quotient I,,/W),, is sometimes called the tame inertia
group, and it is the better understood part of I,. In fact, there is a (non-canonical)
isomorphism

L/w, =[]z,
L#p

and if ¢, is any Frobenius element and & € I,,/W,, we have gbp&gb;l =aP.
Problem 1.17. The group I,/W), corresponds to an extension of 5" Describe that

extension and the map from its Galois group to HZ‘Z' (You will need to make a

t#p
choice of a compatible sequence of ¢"-th roots of unity, which is why the isomorphism

is non-canonical.)

The names of these subgroups reflect their origins in the theory of algebraic
number fields. In fact, a Galois extension K of Q, corresponds to a surjective
homomorphism G, — G(K/Q,), and the extension will be called unramified if
the image of I;, under this map is trivial. Similarly, we’ll say the extension is tamely
ramified if the image of W, is trivial, and wildly ramified if not.

This analysis of the structure of G, can be continued, producing still smaller
subgroups of W, known as the “higher ramification groups.” See, for example,
[135] for details of all this.

Problem 1.18. Above we worked with a Galois extension K/Q,. How do we handle
an extension which is not Galois? What changes?

Putting together the whole picture of what this says about the full Galois group
G, we see that for each prime number p we have a complex package of information:
a set of subgroups

W, CI, C Gg, CGq
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(with both W), and I, normal in Gg,) and a set of Frobenius elements at p. The
last inclusion depends on the choice of the embedding of Q into @p, and hence the
whole picture is only determined up to conjugation.

As before, we can translate this group-theoretical picture in terms of algebraic
number fields. A Galois extension K/Q corresponds to a surjective homomorphism
Gop — G(K/Q), and the extension K/Q will be unramified at p when the images
of all the inertia groups at p are trivial. Note that in this case there is a well-
defined (up to conjugation) image of the Frobenius element ¢, in G(K/Q). In
finite extensions, all but a finite number of primes will be unramified, and if K # Q
at least one prime will be ramified:

Theorem 1.2. If K/Q is a finite extension, then K is ramified at finitely many
primes (to be specific, they are the primes dividing the discriminant of K/Q). Every
non-trivial extension of Q is ramified at at least one prime.

The first part of this theorem is relatively easy (and true over a general number
field). The second is a theorem of Minkowski (and mot true over a general number
field).

Problem 1.19. Above, we described the “local picture” only for non-archimedean
primes. We also need to consider the prime at infinity. Make the proper definitions. In
particular, show that there is a well-defined conjugacy class of elements of order two in
G; we call any element of this conjugacy class a “complex conjugation.”

Problem 1.20. Describe all this for G, where K is a number field. Does anything
significant change?

An important class of extensions of Q are the cyclotomic extensions obtained
by adjoining roots of unity to Q. Let m be a positive integer and let (,, be a
primitive m-th root of unity. Then we know that G(Q({y,)/Q) is abelian, and in
fact isomorphic to the group of units of Z /mZ. If we take the union Ky of all Q({y, )
as m ranges over all the powers of a prime ¢, these isomorphisms compile to give an
isomorphism between G(K;¢/Q) and Z,. Composing this with the surjective map
Go — G(K,/Q) gives a homomorphism

Eg:GQ—)Z;.

This is called the f-adic cyclotomic character; it can be described by saying that,
for any f-power root of unity ¢ and any element ¢ € G we have

7(0) = ¢4,
The extension K, (or, equivalently, the f-adic cyclotomic character) is ramified

only at £ and infinity. If p # £, then, it makes sense to talk about the image of a
Frobenius element at p under €.

Problem 1.21. Prove that if p # £ we have €/(¢,) = p

The Galois group of any cyclotomic extension, and hence also of any Galois
subextension, is abelian. The Kronecker-Weber Theorem asserts that all abelian
extensions of Q are of this kind. In keeping with our main theme, we can restate
this in terms of characters of the Galois group. Given any group G, write G®" for
its abelianization, i.e., its (unique) maximal continuous? abelian quotient, i.e., the

2In general, we will consider only quotients that are quotients in the category of profinite groups,
i.e., quotients by closed subgroups. When we want to emphasize this, we will speak of “continuous
quotients.”
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quotient of G by the closed subgroup topologically generated by the commutators
of G. Then we have:

Theorem 1.3 (Kronecker-Weber). For each prime p, let €, denote the p-adic cy-
clotomic character. The product of all the €,, which maps Gg to the product of all
7%, induces an isomorphism

p7
(I : 68 =[]z =2~
p

Problem 1.22. Check that this isomorphism is equivalent to the theorem as it is
usually stated: all abelian extensions of Q are contained in some cyclotomic field.

There is also a local Kronecker-Weber theorem, and it too can be restated in
terms of characters. Let 7 : Gg, — G, be the standard projection and let €, be
the p-adic cyclotomic character. Then we have:

Theorem 1.4 (Local Kronecker-Weber). The map 7 X €, induces an isomorphism
erp:Géz iGFp prX.

The Kronecker-Weber theorem is the first piece of Class Field Theory over
Q. In general, Class Field Theory provides a detailed description of the abelian
extensions of any number field, and so it can be used to study Galois groups and
their representations. The theory is too complex to summarize here, so we refer
readers to the literature for more details. There are several accounts of Class Field
Theory available; one of the more accessible ones is [112].

There are many other questions to ask about the Galois group of Q. For
example, the following is a famous conjecture:

Conjecture. Any finite group can be obtained as a discrete quotient of Gg.

Much work has been done in the direction of this conjecture (for example, see
[138]), but the full conjecture remains very much open. One reason for mentioning
it here is to point out that it implies that G must be quite complicated!

Various attempts have been made to come up with conjectural descriptions of
G; one of the most interesting is Grothendieck’s theory of “dessins d’enfants” (see
[126] for details).

Restricting the ramification

As we saw above, a finite extension K/Q can be only be ramified at a finite num-
ber of primes. This is not true for infinite extensions (consider the example in
Problem 1.7, for example), but there are good reasons to expect that the “natural”
Galois representations (more precision later) are all finitely ramified. This section
considers the Galois theory with bounded ramification.

We'll fix a finite set S of primes, including the prime at infinity. (This need
not be done in general, but for our purposes we’ll always want to allow ramification
at infinity.) We want to consider extensions K/Q which are ramified only at the
primes belonging to S; we describe these as “unramified outside S.” Putting all
such K together gives Qg, the maximal extension of QQ which is unramified outside
S. This is easily checked to be a Galois extension of Q; we want to study the group

Go,s = G(Qs /Q).
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This is a quotient of the full Gg, of course, but in many ways it is much easier to
understand.

Before we consider the main results, let’s point out that we can make the same
definition for a general number field K, and a set of primes® S of K (again, including
all the archimedean primes), yielding a group that we will call Gk . Notice that
in both cases we are putting no restrictions on the ramification at infinity.

Problem 1.23. Suppose S is a set of primes in Q and S is the set of primes in K
lying over the primes in S. Is there a simple description of the relation between Gk s,
and GQs?

Problem 1.24. Show that any open subgroup of Gk g is again of the form Gk, s,
for some finite extension K /K.

Problem 1.25. What would change if we decided to restrict the ramification at the
archimedean primes?

The first important fact about G'k,s is the following finiteness result:

Theorem 1.5 (Hermite-Minkowski). Let K be a finite extension of Q, let S be a
finite set of primes and let d be a positive integer. There are only finitely many
extensions F/K of degree d which are unramified outside S.

An important consequence of this theorem is the fact that the set
Homeont (GK,S: Z/pZ)

is finite, since each nontrivial continuous homomorphism corresponds to an exten-
sion of degree p, unramified outside S. Putting this together with Problem 1.24
gives the following crucial (for us) result:

Theorem 1.6. Let p be a prime number, K a number field, and S a finite set of
(non-archimedean) primes. Let G C Gk s be an open subgroup. Then there ezist
only a finite number of continuous homomorphisms from G to Z [pZ.

Mazur calls this the p-finiteness condition, and we will use it in an essential
way to understand the deformations of a Galois representation.

Problem 1.26. Show that the p-finiteness condition also holds for any of the Gg,.
(Is anything special about the case ¢ = p?)

How big are the groups we are considering? As we saw, the absolute Galois
group of a finite field is topologically generated by one element, the Frobenius. For
a local field, one can also show a finite generation result:

Theorem 1.7. If K is a finite extension of Q,, then G is topologically finitely
generated.

For this and much more about the Galois group of a local field, see [76], [77],
and [161], which together give a detailed description of G in this case.

The situation for the Gk, s is much more complicated. Shafarevich conjectured*
that this group is also topologically finitely generated, but so far this remains an

3We actually get a choice here. We could keep S as a set of primes in Q, and say that an extension
of K is “unramified outside S” if it is unramified at all primes of K that do not lie above a prime
belonging to S. This point of view has its advantages, but of course choosing a set of primes in
K is more general.

4The reference is [142], but we should note that there Shafarevich simply asks whether it is the
case that G s is finitely generated for any number field (and whether the number of generators
can be bounded in terms of the number of elements of S). His main reason for posing the question
is that the analogous statement is true for function fields over C.



12 F. Q. GOUVEA, GALOIS DEFORMATIONS

open question. (The p-finiteness property, which would follow from finite genera-
tion, is a sort of replacement for this still-unknown result.) We do know that Gk, g
is topologically countably generated.

Problem 1.27. Prove this. In other words, show that there exists a countable set of
elements that generate a dense subgroup of Gk s. (This is actually quite easy.)

Problem 1.28. (A test situation; as far as | know, this is an open problem.) For each
elliptic curve E defined over QQ, with good reduction outside 2, let Q(7%(E)) be the
extension of Q obtained by adjoining the coordinates of the 2"-division points for all
n (equivalently, it is the field fixed by the kernel of the 2-adic representation attached
to E). Let K be the compositum of the Q(7>(E)) as E runs through all such elliptic
curves. Is G(K/Q) topologically finitely generated?

For every prime p, we can carry the local picture from the previous section over
to Go,s and get homomorphisms Gg, — Gg,s. When p ¢ S, the image of the
inertia group I, is trivial, and therefore there is a well-defined Frobenius element
¢p in Gg,s which generates the image of Gg,. It seems natural to conjecture® that
the image of Gg, in Gg,s is as large as possible:

Conjecture. With the notations above, we have:
i. If p€ S, the map G, — G,s is an inclusion.
i. If p ¢ S, the kernel of the map Gg, — Go,s is exactly I, so that we get an
inclusion G@p/Ip — G@75.

This very natural conjecture seems to be quite difficult to prove.

As pointed out above, for each p ¢ S we have a well-defined Frobenius element
¢p in the image of Gg,. The whole local picture, however, is defined only up to
conjugation, so if we do not want to fix the homomorphisms Gg, — Gg,s we
should think of the Frobenius element as a conjugacy class of elements of Gg,s.
One of the most significant results about the set of all these conjugacy classes is
the following density result.

Theorem 1.8 (Chebotarev). Let K/Q be a Galois extension that is unramified
outside a finite set S of primes. Let T be a finite set of primes containing S. For
each prime p ¢ T, there is a well-defined Frobenius conjugacy class [¢p] C G(K/Q).
The union of all these Frobenius conjugacy classes is dense in G(K/Q).

Problem 1.29. What does this say when K is a finite extension of Q? (Easy question,
but the fact is worth noting.)
Problem 1.30. Let (,, be a primitive m-th root of unity, and let K = Q((,). In
this case the Galois group is known completely explicitly, and we also know what the
Frobenius elements are. What does the Chebotarev theorem tell us in this situation?
Problem 1.31. Is the set of (topological) generators given by the Chebotarev theorem
countable?

Finally, the abelianization of G, s is easily understood by using the Kronecker-
Weber theorem.
Problem 1.32. Show that G2’ is isomorphic to [ Z).

peS

As before, we can use Class Field Theory to understand the abelianization in

the case of a number field.

5Thanks to Ralph Greenberg for mentioning this issue to me.
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Galois representations

Why consider the representations of G, s? One of the reasons is simply that such
representations arise naturally, for example from the theory of elliptic curves and
modular forms. Another reason, as Mazur has pointed out, is the fact that the
whole picture we want to study, which includes not only Gg,s but also all the
maps Gg, — Gy,s, is only defined up to conjugation. Group representations are
well-suited to this situation. For example, for p ¢ S the Frobenius elements ¢,
are only defined up to conjugation, but the characteristic polynomial of the image
of ¢, under a representation is well-defined (and therefore so are the trace and
determinant of the image).
Let’s make the formal definition:

Definition 1.3. A Galois representation (defined over A, unramified outside S) is
a continuous homomorphism

p:Go,s — GL,(A),

where A is some topological ring and n is a positive integer. Two Galois repre-
sentations p; and po are equivalent if there is a matrix P € GL,(A) such that
Pilplp = p2.

Given such a thing, we can consider the free A-module of rank n and give
it a continuous action of Gg s by defining g - m = p(g)m. Conversely, given a
finite free A-module M of rank n with a continuous action of Gq, s, we can get a
representation p as above by choosing a basis for M. Changing the basis changes
p into an equivalent representation.

If we have a finite free A-module M with a continuous action of a profinite
group G such that

M:anMH
H

as H runs through the open normal subgroups of G, then we can canonically make
M into a module over the completed group ring A[[G]], defined as

AllG] = I%HA[G/H],

where H runs through the open normal subgroups of G and A[G/H] is the usual
group ring of the finite group G/H over A. In problem 1.14, we checked that the
condition on M is automatically verified when A is a profinite ring. Hence, giving
(up to equivalence) a representation of G defined over a profinite ring A is the same
as giving a continuous A[[G]]-module M which is finite and free as an A-module.
This point of view is also occasionally useful.

There is one final point of view which is occasionally useful. Given a represen-
tation

p:G— GL,(4)
defined over a profinite ring A, we can extend it by linearity to the completed group
ring A[[G]], to get a continuous homomorphism of A-algebras

A[[G]] — My (4).

Conversely, the restriction to G of any such homomorphism gives a representation
in the usual sense.
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In what follows, we will mostly stick to the first point of view, but every once
in a while, when A is a profinite ring (as it will often be), it will be convenient to
switch to the other versions.

The standard choices for the ring A are the following:

i. A = C. These are known as “Artin representations,” and are the most
classical. Because of the topologies involved, the image of Gg g in GL, (A)
must be finite.

it. A is a finite field. These representations arise naturally from elliptic curves
and modular forms, and they are the ones that Serre’s conjecture tries to
describe.

4. A = Zpor Q, or finite extensions thereof. These also arise from elliptic curves
and modular forms. Since Z, (or a finite extension) also carries a profinite
topology, this case gives the best “match” in topologies. In particular, the
image of Gg,s is not necessarily finite in this case.

Our main interest is in the last two cases, and in the relation between them, so
we will choose to work with rings A that are generalizations of those two situations.
Specifically, we will assume A is a complete noetherian local ring with finite residue
field. Note, by problem 1.13, that such an A is automatically a profinite ring.

In a sense, we are interested in trying to understand all the (finitely ramified)
Galois representations into GL,(A4). For n = 1, this is essentially already done,
since describing all such representations amounts to describing the abelianizations
G2, and this is basically what Class Field Theory does. (If K # Q this is not
quite true, since one runs into such difficulties as Leopoldt’s Conjecture, but one
still has quite good control of the situation.) Hence, we’ll focus on n > 2. In fact,
things are already so interesting for n = 2 that we’ll often restrict ourselves to
that case, which is also the case where Serre’s conjecture applies and where we get
representations from elliptic curves and modular forms.

Studying “all the representations” is far too vague to serve as a guideline for
investigation, however, and so we have to come up with a more specific program.
The point of view we will take, then, is to start with a given representation into
GL,,(k), where k is a finite field, and then to consider all the representations which
“lift” this representation to GL, (A), where A runs through all complete noetherian
local rings with residue field k. It turns out that we can make this into a well-defined
question and (even better!) that the question has an interesting answer.

Complements to Lecture 1

The first lecture makes intensive use of both the notion of an inverse limit and the
theory of profinite groups. We give brief summaries of each of these, with some
references.

Inverse limits

Inverse limits make sense for various kinds of mathematical objects. We could
phrase everything in the language of categories (as in the next lecture), but we
avoid that for now. Hence, we discuss inverse limits of sets, of groups, and of rings;
the reader should note, however, that we do not really use many specific properties
of these objects.
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We start with a partially ordered set I, which we want to be a directed set.
This just means that given i,7 € I there exists k € I such that ¢ < k and 57 < k.
For example, I could be the set of all positive integers with the usual order, or the
set of positive integers ordered by divisibility.

To give an inverse system we must specify:

e a directed set I,

e for each i € I, a group (or ring, or set) Gj,

e for each pair i, € I such that 7 < j, a group (or ring, or set) homomorphism
(ﬁw’ : Gj — Gl

(Of course, a “set homomorphism” is just an arbitrary function.) We could add
requirements of continuity if our objects carried natural topologies, and so on. We
require that this data satisfy the “obvious” conditions:

e ¢;; is the identity, and
e “all triangles commute,” that is, if ¢ < j <k then ¢, = ¢ij o dji.

Here are some famous examples:

Problem 1.33. Let I be the set of positive integers with the usual order, let p be a
fixed prime number, and for each n € I let G,, be the ring Z /p"Z. If n < m, let ¢y,
be “reduction mod p™.” Check that this defines an inverse system.

Problem 1.34. Let I be the set of positive integers ordered by divisibility. For each
n € I, get G, be the ring Z /nZ, and whenever n|m let ¢,,, be “reduction modulo
n.” Check that this defines an inverse system.

Problem 1.35. Let F/K be a field extension, and let I be the set of finite Galois
subextensions, ordered by inclusion. For each K’ € I, let Gx» = G(K'/K), and if
K' C K" let ¢+ be the restriction map G(K"/K) — G(K'/K). Check that this
defines an inverse system.

Of course, we can also make a trivial inverse system by making all the G; be
the same and taking all the maps to be the identity map.

Now we can define an inverse limit. Given an inverse system of groups (or
rings, or sets) as above, we’ll say a group (or ring, or set) G is the inverse limit of
the system if it satisfies two conditions:

e (G comes equipped with homomorphisms v; : G — G; for every i € I making
all triangles commute: if ¢ < j, then ¢; = ¢;; o ;.

e G is “universal” among groups (rings, sets) with this property, i.e., given any
other group (ring, set) G' with such a set of homomorphisms, there exists a
unique homomorphism G’ — G through which they all factor.

In this case, we write
i

(This notation is somewhat abusive, since it doesn’t sufficiently specify the inverse
system. In most cases, however, it’s easy to figure out which inverse system is
meant.)

Of course, this kind of definition is useless without some kind of concrete con-
struction to show that such things exist. So here is a constructive description of
G (that can also serve as proof that inverse limits of groups, rings, and sets exist).
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Consider the product

p=]]G:

icl
Elements of P are sequences indexed by I, which we write as (g;);ecr, where g; € G;.

We get the inverse limit G by considering the piece of this product set which contains
the “coherent” sequences, i.e.,

G = {(9:)ierl¢ij(9;) = 9; whenever i < j}.

Problem 1.36. Check that this works, that is, that this G is a group (ring, set) and
is the inverse limit.

Problem 1.37. Check that if each of the G is a topological group and the ¢;; are
all continuous, then G is the inverse limit of the G; as topological groups.

In most of the situations we work with, the G; are finite groups (rings, sets).
If we give them the discrete topology, they are then compact as topological spaces.
The product P, with the product topology, is then compact, and it’s easy to see that
G is a closed subset of P. Hence G carries a natural compact Hausdorff topology.

The inverse limits of the three inverse systems we considered above are the ring
Zy of p-adic integers, the ring Z, and the Galois group G(F/K). The first of these
is a good example on which to test the theory, particularly if you think of Z, in
terms of p-adic expansions. (See [59, Sections 1.2 and 3.3] for a very elementary
treatment and [133, Chapter 2] for a more sophisticated version.)

Finally, two problems to give you a chance to play with these ideas and extend
them at the same time:

Problem 1.38. Define an “exact sequence of inverse systems” and decide whether
inverse limits preserve exactness. (Not easy!)

Problem 1.39. Define "direct systems” and “direct limits” by turning all the arrows
around. As an example, let I be the positive integers ordered by divisibility, and for
each n let G, = Z/nZ (thought of as an additive group). Whenever n|m, define
Gmn L/l — Z/mZ by mapping 1 to m/n. Can you describe the direct limit?

Profinite groups

The definition of a profinite group is a direct application of the ideas we have just
discussed:

Definition 1.4. A profinite group is a topological group which can be represented
as the inverse limit of an inverse system of finite groups (thought of as carrying the
discrete topology).

It follows that profinite groups are compact, by the discussion above. Some of
the topological properties of profinite groups we discussed (or set as problems) in
the lecture. Here are three others: suppose G is a profinite group, so that

G = m Gi,
i
and let K; = Ker(¢; : G — G;). Then, since G; is discrete, K; is an open subgroup

of G.

Problem 1.40. Show that the K;, i € I, form a basis of open neighborhoods of the
identity in G.
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Problem 1.41. Show that a subgroup of G is open if and only if it is closed and of
finite index.
Problem 1.42. Show that any closed subgroup of a profinite group is the intersection
of all open subgroups containing it.

As we pointed out in the lecture, profinite groups are totally disconnected, that
is, the connected component of any point is the singleton set consisting only of that
point. It turns out that this is equivalent to being profinite:

Theorem 1.9. Let G be a (Hausdorff and) compact topological group. The follow-
ing are equivalent:
i. G is profinite,
it. G is totally disconnected,
iti. G has a set of open normal subgroups which is a full system of neighborhoods
of the identity.

See [143] for a proof.

The property of being profinite is preserved under taking closed subgroups,
quotients (by closed subgroups), arbitrary direct products, and inverse limits. As
the lecture suggests, many of the properties of finite subgroups still make sense
for profinite subgroups. For example, it makes sense to talk about pro-p-groups,
meaning profinite groups all of whose finite discrete quotients are p-groups.

For more on profinite groups, see [109, Appendix C], [139] (or its English
translation [140]), and [143].)






LECTURE 2
Deformations of Representations

The basic situation we want to study is as follows. We are given either a
number field K and a finite set of primes S, or a local field F, and we are given a
representation of either Gx s or Gr into GL, (k), where k is a finite field. We want
to try to understand all possible lifts of this representation to GL,(A), where A is a
complete noetherian local ring with residue field k. It is not exactly clear, of course,
what “understand all possible lifts” means, and so the main goal of this lecture is to
make our question precise. We begin by discussing some of the historical motivation
for the theory, then develop (the simplest form of) the precise deformation problem
we want to study.

Why deform Galois representations?

Nowadays, the obvious reason to study deformations of Galois representations is
that they played a crucial role in the proof of the modularity conjecture for elliptic
curves over Q (work of Wiles, Taylor, Diamond, Breuil, and Conrad). However,
the theory predates that work, and so the original motivation was different.

Historically, the first (p-adic) Galois representations to be carefully studied
were those coming from elliptic curves. Every elliptic curve defined over Q with
good reduction outside a set of primes S gives us representations of Gg s into
both GL2(Z,) and GL»(E,), and (usually) the representation over Z, is a “lift”
of the representation over [,. This already gives us a first example of a residual
representation and one of its deformations.

The second classical source of Galois representations are modular forms, and
once again one sees the same pattern: one gets a pair of representations, in charac-
teristic zero and in characteristic p, which are (usually') an example of a residual
representation and a deformation.

The real push towards a careful study of such deformations, however, seems to
have been inspired by Hida’s results on the theory of ordinary p-adic modular forms,
which yielded representations which were described at the time as “very large.” In
particular, specializing Hida’s large representations in different ways produced a

IWe say “usually” because of the following problem. We’ll often want to work with a semisimple
residual representation, which means we’ll sometimes have to pass from a representation to its
semisimplification. This means that the residual representation coming, for example, from a
modular form may fail to be the reduction of the representation in characteristic zero..

19
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large number of deformations of a residual representation, some of which did not
look much like any of the “usual” representations. This seems to have led Mazur,
in his seminal paper [97], to pose the question of understanding the deformations
in general.

To explain this more fully, we give a very loose description of Hida’s work on
ordinary p-adic modular forms (see [71], [70] or [72], for example), focusing only
on the features that are relevant to our theme. Our summary assumes the reader
is familiar with the standard theory of modular forms; see [13].

Fix a prime p > 5, an integer N, not divisible by p, and an integer k£ > 2. Let
My(N,Zyp) be the Z,-module of modular forms of weight k on I'y (N) N Ty (p) with
coefficients in Z,, and consider the submodule My (N,Z,)? of “ordinary” modular
forms, i.e., the submodule spanned by the eigenforms for the U = U, operator
whose eigenvalues are p-adic units. (We could consider finite extensions of Z, in
exactly the same way.) Hida constructed a Hecke algebra T® = T°(N) attached
to the whole family of spaces M (N,Z,)?, for k > 2. If we let T' = 1 + pZ, and
A = Z,[[T]] be the usual Iwasawa algebra, T is a finite flat A-algebra, and any
Hecke eigenform in any of our spaces corresponds to a homomorphism T® — Z,,.

Suppose we have such an eigenform f € M(N,Z,)?. Write f for the reduction
of f modulo p, which we can think of as a modular form of weight k£ over the
finite field E,; the fact that f is ordinary translates, modulo p, into the assertion
that f is not in the kernel of U. Because it is an eigenform, f corresponds to a
homomorphism T® —s F,. The kernel of this homomorphism is a maximal ideal
m = m(f) C T° Let R(f) = T be the completion of T” at the ideal m. Then
R(f) is a complete local A-algebra, and is finite and flat over A.

Now we bring in Galois representations. One of the fundamental facts in
the theory is that every time we have a Hecke eigenform, it gives rise to a two-
dimensional Galois representation. Since our f is an eigenform, we get a represen-
tation

pr: GQ — GL2(ZP)

Reducing modulo p (and taking the semi-simplification if necessary, see below) gives
a representation

ﬁf : GQ — GL2(Fp)
Hida’s work showed that there exists a “big” representation
pr : Go — GLa(R(f))

which “interpolates” all the representations p, coming from ordinary eigenforms
g € My (N,Z,)° for various weights k' such that the g-expansions of f and g
coincide modulo p.

More precisely, suppose we find an eigenform g € My, (N, Z,)? such that f=3,
where bars indicate reduction modulo p. Then it turns out that the “residual
representations” p, and p, are the same (up to equivalence). Hida’s theorem says
that there exists a homomorphism R(f) — Z, such that composing pg with this
homomorphism gives p,. Thus, our big representation is somehow parametrizing
all lifts of the residual representation p; which are of a certain type. We can think
of pg as an analytic family of Galois representations, all of which have the same
reduction modulo p. It is natural then, to ask about such families in general, and
that question leads at once to the deformation theory.
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Furthermore, it quickly became clear that there are other homomorphisms
R(f) — Z,, ones that do not correspond to modular forms (or at least not to
the usual kind of modular forms). Specializing the representation via one of these
homomorphisms can produce rather strange representations (for example, see the
final sections of [106]). This suggests, once again, that it makes sense to try to
study “all the deformations.”

The deformation functor

Mazur created the theory of deformations of Galois representations in his paper
[97], which is one of the fundamental references for this section (and for much of
what follows also). See also Mazur’s notes from the Boston University conference,
[101], and the notes [42] by Doran and Wong.

What we want to do is imitate the situation in Hida’s theory, in maximal
generality. So we’ll start with a profinite group IT (which will later be a Galois
group of some kind) and a representation of II into matrices over a finite field. The
basic question will be: can we describe all lifts of this representation to (appropriate)
p-adically complete rings?

Let k be a finite? field of characteristic p. For this section, we make no assump-
tions on p. We will want to start with a representation into GL,(k), and consider
its lifts.

Let II be a profinite group. In order for the theory to work, we need to know
that IT satisfies the finiteness condition which we considered, in the case of Galois
groups, in our first lecture.

Condition ®,: For every open subgroup of finite index Iy C 11 there exist only a
finite number of continuous homomorphisms IIy — F,.

We already know, by Theorem 1.6 and Problem 1.26, that the Condition &,
holds for G, and for Gq,s, where £ is a prime and S is a finite set of primes. It’s
worth pointing out that the condition can be stated in several equivalent forms.

Let’s first set up some notation. First, the pro-p-completion of the profinite
group II is

n® — @H/N,
N

where we take the limit over all closed normal subgroups whose index is (finite
and) a power of p. Second, the p-Frattini quotient of I is the maximal continuous
abelian quotient of II which is of exponent p.
Problem 2.1. Show that the p-Frattini quotient exists and that it is the image of a
surjective continuous homomorphism from TI(%).

The following lemma gives several equivalent ways of stating condition ®,,.

Lemma 2.1. Let Iy be a profinite group. The following conditions are equivalent:
i. the pro-p-completion of Ily is topologically finitely generated,
it. the abelianization of the pro-p-completion of Ily is a Z,-module of finite rank,
iti. the p-Frattini quotient of Iy is finite,
. the set of continuous homomorphisms from Iy to E, is finite.

2The construction works just as well for something like the algebraic closure of F,, but the case
of a finite field is the most significant for us, and we’ll simplify things by restricting ourselves to
this case.
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Proof. Clearly a set of topological generators of the pro-p-completion becomes
a set of generators over Z, in the abelianization, and becomes a basis of the p-
Frattini-quotient as a vector space over E,. Hence, it’s clear that (1) = (2) = (3).
Since any homomorphism II, — F, must factor through the p-Frattini-quotient,
(3) and (4) are equivalent. To conclude the proof, we use the profinite version of
the Burnside Basis Theorem, which says that if the image in the p-Frattini quotient

of a set {g1,...,gr} of elements of the pro-p-group H(()p ) is a basis for the quotient

as a vector space over F, then g, ..., g, topologically generate H(()p ). 1t follows

that (3) = (1), and we’re done. O

Problem 2.2. (The pro-p version of the Burnside Basis Theorem) Let G be a pro-
p-group, i.e., an inverse limit of finite p-groups, and let Fr(G) be its pro-p-Frattini
quotient. Prove that any lifting to G of a basis of Fr(G) as a vector space over E, is a
set of topological generators for GG.

As we saw above, (finitely ramified) Galois groups satisfy condition ®,. This
can be vastly generalized; see [84].

Having stated our crucial assumption about the profinite group II, let’s go on
to talk about its representations, according to the “program” we have outlined. We
want to start, then, with a homomorphism

p: I — GL,(k),
and we want to consider lifts of p, that is, homomorphisms
p: I — GL,(R)

where R is a ring together with a homomorphism 7 : R — k such that the image
of p under the homomorphism GL,(R) — GL, (k) induced by 7 is our residual
representation p, i.e., the diagram

GLy(R)

e
T —5 GL, (k)

is commutative. If we want to do this correctly, however, we need to be a bit more
precise about the rings we will be considering. So we set this up in the language of
categories.

Choose and fix a finite field k of characteristic p. Let € denote the category
whose objects are complete noetherian local rings with residue field k and whose
morphisms are local homomorphisms Ry — R» of complete noetherian local rings
which induce the identity on k.? In particular, this means that if m is the maximal
ideal of R, then we are requiring that, first, R/m = k, and second,

R =limR/m’.
J

(It is useful to recall that by the Krull intersection theorem the intersection of the
m’ is 0, which is equivalent to saying that the natural topology on a noetherian
local ring is always Hausdorff.)

3To be absolutely precise, we need to make our objects be complete noetherian local rings (R, m)
together with a fized isomorphism R/m = ks, but we’ll refrain from being picky about this.
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Sometimes it is also convenient to consider the full subcategory C° whose ob-
jects are artinian local rings with residue field k. (Notice that the maximal ideal of
an artinian local ring is always nilpotent, and hence such rings are automatically
complete and noetherian.) Following Mazur, we will call the objects of € “coefficient
rings” and we will call the morphisms “coefficient ring homomorphisms.”

Notice that (as is implicit from our use of the word “complete”) all coefficient
rings carry a natural topology, in which the powers of the maximal ideal are a basis
of neighborhoods of 0. Coefficient ring homomorphisms are continuous with respect
to this topology.

Problem 2.3. Prove that objects of € are pro-objects of €. Specifically, prove that
if R is a complete noetherian local ring with maximal ideal m, then for every n the
quotient R/m™ is an object of €°, and R is the inverse limit of the R/m".

Problem 2.4. With the notations in the previous problem, show that the topology
on R/m" is discrete, and that the topology on R is the inverse limit topology.

Problem 2.5. How serious are the restrictions on “coefficient ring homomorphisms?”
Find examples of ring homomorphisms between objects of C which are not “coefficient
ring homomorphisms.”

The “simplest” example of a (non-artinian) element of € is the ring W (k) of
Witt vectors. Since k is finite, this is simply the (unique) unramified extension of
Z, whose residue field is k. When k = E,, then W (k) is Z,, itself. See [135] for
more information on rings of Witt vectors.

Problem 2.6. Show that any coefficient ring R in € carries a canonical W (k) algebra
structure. (That is, show that every such R has a unique coefficient ring homomorphism
W(k) — R))

Problem 2.7. Show that in fact every coefficient ring is a quotient of a power series
ring in several variables with coefficients in W (k).

As the last two problems show, our coefficient rings are automatically T (k)-
algebras. It often happens, however, that we want to modify this somewhat. For
example, suppose that we start the game with a representation that comes from a
modular form. Then we have at hand not only a residual representation defined
over a finite field k, but also a particular lift to a discrete valuation ring O that may
very well not be W (k). In such a situation, we may decide that we want to restrict
the whole game to coefficient rings that are O-algebras. This amounts to working
in a slightly different category.

Let A be an object of €, that is a complete noetherian local ring with residue
field k. We’ll define C5 to be the category whose objects are complete noetherian
local A-algebras with residue field k and whose morphisms are coefficient-ring ho-
momorphisms which are also A-algebra homomorphisms. As before we let €} be
the full subcategory of artinian A-algebras with residue field k. Of course, € is the
same as Cyy (y)-

Problem 2.8. Is it true that every element of C, is a quotient of a power series ring
in several variables over A?

Given a coefficient ring R (i.e. an object of €, or of Cx if we have fixed a
different base ring), we will write 7 for the canonical projection R — k and also,
by abuse of language, for the map it induces from GL,,(R) to GL,(k). Finally, we
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let
T,(R) = Ker (GLn(R) N GLn(k)) .
Definition 2.1. Let R be a coefficient ring. We say two homomorphisms
P1,pP2 - InI— GLn(R)

are strictly equivalent if there exists M € I';,(R) such that p; = M~1p,M.

The idea, of course, is that strictly equivalent homomorphisms give the same
homomorphism when we compose them with 7 : R — k. This will give the right
notion of equivalence for the theory we have in mind.

Suppose now that we start with a representation (i.e., a continuous group ho-
momorphism)

5:1 — GL, (k).

We will call this a residual representation. For the rest of this section we will assume
that we have chosen and fixed such a residual representation. We are finally ready
to make the crucial definition.*

Definition 2.2. Let p be a residual representation and let R be a coefficient ring.
A deformation of p to R is a strict equivalence class of continuous homomorphisms

p: I — GL,(R)

which reduce to p via the projection 7, that is, such that 7o p = p.

GLn(R)

e
T — GL, (k)

If we want to be precise, we really have to say that we require 7o = p for any
homomorphism ¢ in the strict equivalence class of p. Of course, this will be true for
all o in the strict equivalence class if and only if it is true for one of them, so this
quibble isn’t really very serious. We will, in fact, routinely confuse a homomorphism
with its strict equivalence class, and deal with the possible confusions this will
generate as they arise.

We think of this as defining a functor

D =Dy : €~ Sets
where
D;(R) = {deformations of p to R}.

Similarly, we define the functor D5 A by restricting to the subcategory Ca.
We will often drop the p from the notation, since our residual representation will
typically be fixed for the whole discussion.

Lemma 2.2. D and Dy are functors.

4People who are familiar with deformation theory in a geometric context should note that we are
really talking of “infinitesimal” or “formal” deformations here.
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Problem 2.9. Prove the lemma. (The main things here are to recall what it means
to be a functor and to remember that deformations are strict equivalence classes of
homomorphisms.)

Problem 2.10. Translate this into the language of free R-modules with a continuous
action of II. A residual representation becomes a k-vector space with a continuous
action of IT and a deformation must be some kind of free R-module with a continuous
action of II. Make the appropriate definition and compare the resulting functor with
the one(s) we have just defined.

Recall that the categories € and C° are related because objects of € are pro-
objects of €. Specifically, if R is a complete noetherian local ring with residue field
k, then, if m is the maximal ideal of R, we have

R = lim R/m".
k

Now, if we have a functor F on €, the sets F(R/m*) will form an inverse system,
and there will be compatible morphisms F(R) — F(R/m*). These compile to give
a canonical morphism

F(R) — Lim F(R/m").
k

Definition 2.3. We say a functor F on € is continuous when the canonical mor-
phism

F(R) — lim F(R/m")
k

is an isomorphism.
Lemma 2.3. D and Dy are continuous functors.

Proof. We work with D; the proof for D, is the same.
Recall, first, that

GLy(R) = lim GL, (R/m")
k

and
[n(R) = lim T, (R/m").
k

Furthermore, note that the maps
GL,(R/m*!) — GL,,(R/m*)
and
T, (R/mFt) — T (R/m")

are all surjective.

If deformations were simply homomorphisms, the continuity would now follow
at once. However, deformations are strict equivalence classes of homomorphisms,
and so we have to be a bit more careful.

The canonical map

D(R) — lim D(R/m")
k
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maps a deformation p = pr of p to R to the coherent sequence {p;}, where py, is
the deformation to R/m* obtained by reducing (any homomorphism representing)
p modulo mF.

To show that the canonical map is surjective, we need to show that any coher-
ent sequence {py} comes from a deformation p to R. For this, it is enough to show
that we can choose the homomorphisms representing pr so as to have a coherent
sequence of homomorphisms. For k = 1, we must have p; = p, so there is no choice
at this level. Assume we have chosen homomorphisms ry,...,r; representing the
deformations p1,..., pr and forming a coherent sequence. Let r’ be any homomor-
phism representing pi+1. The assumption that the sequence {py} is coherent means
that there exists My € ['(R/m*) such that M, '(r' (mod m*))Mj, = rj. Choosing
a lift My, of My, to T(R/m**!) and setting rp, = M,;_llr’MkH extends the
coherent sequence to level k + 1. By induction, we get a coherent sequence {ry}
of homomorphisms IT — GL,,(R/m*). Taking the inverse limit of these homomor-
phisms then gives a deformation p : 1 — GL,,(R) whose reduction modulo m* is
pr- This proves the canonical map is surjective.

To show that the canonical map is injective, we need to show that if p and
p' are homomorphisms I — GL,(R) such that p; = p (mod m*) and p} = p’
(mod m*) are strictly equivalent for all k, then p and p' are strictly equivalent. The
assumption is that for all & we can find My € T'(R/m*) such that

pr = M pl M.

It is clear that we can choose the M} such that My = M; (mod mk), giving a
coherent sequence and therefore and element of I'(R) such that p = M~'p' M, as
desired. This proves the canonical map is injective. O

The continuity of our functor is an important technical tool: basically it shows
that D is completely determined by its values on the full subcategory C°. We will
use this in a crucial way later, when we use the Schlessinger criteria for repre-
sentability, which apply to functors on artinian rings.

We should note a final variation on the basic idea. Suppose we have a lift py
of p to a coefficient ring A. Then it makes sense to look only at those deformations
which are actually deformations of our fixed lift to A, that is, deformations to
coefficient rings R with a map to A such that the induced deformation is p4. This
leads to a slightly modified functor again, for which we need to make two changes:

i. First, we work with the category whose objects are coefficient rings (or coeffi-
cient A-algebras) that come with an “A-augmentation,” that is, a coefficient
ring (A-algebra) homomorphism R — A. In [101], Mazur calls these “A-
augmented coefficient rings (or A-algebras).” We call this category €(A) (or
Ca(4)).

it. Second, we change the definition of strict equivalence to allow conjugation
only by matrices in the kernel of the map GL,(R) — GL,(A) induced by
the augmentation.

As before, one needs to also consider the full subcategory C}(A4) of A-augmented
artinian local A-algebras with residue field k. See Mazur’s discussion in [101] for
more about this “relative” version of the theory.
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Universal deformations: why representable functors are nice

The question we want to ask about our deformation functor is whether it is repre-
sentable. This means the following. Given any coefficient ring R, we can define a
set-valued functor hg on € by setting, for each coefficient ring S,

hz(S) = Hom(R, S),

where of course Hom indicates coefficient ring homomorphisms, and where the
action on homomorphisms S; — S5 defined by composition. We say that a functor
F is representable if it is isomorphic to the functor hy for some coefficient ring R.
Hence, to ask whether D is representable is to ask whether there exists a coefficient
ring (or coefficient A-algebra) R such that we have

DW(R) = HOHI(:RW, R)

for every coefficient ring R and this identification is “functorial,” i.e., transforms
well under homomorphisms. Let’s explore that idea a little in this section.

Assume, then, that the ring R = Rz exists. First of all, consider the case
R = R. Since the identity is a homomorphism from R to itself, it corresponds to a
deformation

p: 11 — GL,(R).

This will turn out to deserve to be called the “universal” deformation. To see why,
consider any deformation p to a coefficient ring R. By our assumption that the
functor is represented by R, this deformation must correspond to a (better: exactly
one) coefficient ring homomorphism ¢ : R — R, and the morphism mapping p
to p must be “composition with ¢.” In other words, given any deformation p to
a coefficient ring R, there is a coefficient ring homomorphism ¢ : R — R such
that p = ¢ o p. Thus, the ring R parametrizes all possible deformations, and the
deformation p is “universal,” because every deformation is derived from it.

The upshot, then, is that if we can show that our functor is representable we
will get a large ring, which we will call the wuniversal deformation ring of p and
denote by Rz, and a representation

p: II— GLn(Rﬁ),
which we will call the universal deformation of p.

Problem 2.11. Show that any representable functor is continuous.

As we noted above, we sometimes want to work not with the functor D but
rather with the functor Da which is the result of restricting our attention to coef-
ficient rings which are also A-algebras. As we pointed out above, D is the same as
Dy k), so it would seem that we should work directly with the more general case.
It turns out, however, that the moving from one case to another is quite easy:

Theorem 2.4. If D is representable by a coefficient-ring R, then Dy is repre-
sentable by Ry = fR®W(k)A.

Proof. This is essentially clear if one understands what a completed tensor product
is. First of all, note that Ry is a coefficient ring and a A-algebra. (This is why
we need a completed tensor product: the tensor product of two coefficient rings
need not be complete, so we must pass to the completion to obtain a coefficient
ring again.) Next, there is a canonical coefficient-ring homomorphism R — Ry,
which induces a deformation p, of p to Ry. We claim that this is the universal
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deformation to coefficient A-algebras. To see this, just note that any map from R
to a coefficient A-algebra A factors through the canonical map R — Ry. O

Problem 2.12. Show that the completed tensor product (over W (k)) of two coeffi-
cient rings is a coefficient ring. In fact, show that completed tensor product of R; and
R> is the inverse limit over pairs (7, j) of the tensor products Rl/mﬁ%1 tensor Rg/mf%.

Problem 2.13. Suppose R = W (k)[[X1, X2, ..., Xk]]/I, where I is the closed ideal
generated by fi, fa,..., fs. Describe Ry.

Problem 2.14. More generally, suppose two coefficient rings R; and R, are given
explicitly as quotients of power series rings in several variables over T (k). Describe
Ry @ i) Ra-

Problem 2.15. It is clearly not always possible to recover R from R, (for example,
consider A = k). Is it ever possible to “descend” from Rj to R?

As we learn from algebraic geometry, one can associate to a ring such as R
a geometric object SpecR, and an “A-valued point on SpecR” is the same as a
ring homomorphism R — A. Since coefficient-ring homomorphisms R — A
correspond to deformations, this suggests that we should call Spec R the “universal
deformation space” of p. There is something to be careful of here, however: the “A-
valued points of SpecR” include all ring-homomorphisms R — A, and of course
not all such homomorphisms will induce a deformation of p to A (one will always
get a representation II — GL,(A), but it need not be continuous nor, even if
continuous, need it be a lift of p). A better way to obtain a “deformation space”
from the universal deformation ring R is to consider its formal spectrum Spf R as a
formal scheme over Spf W (k) or the associated rigid-analytic space Spf R''& (which,
however, is not quasi-caompact; see [35] for the properties of the functor (—)'8).

Suppose, for example, that k = E, and R = Z,[[ X1, X2, X3]] (as will actually be
the case in one of our examples). Then we want to think of the associated space as a
three-dimensional space over Z,, with three parameters corresponding to the three
variables. But the dimension of Spec R (which is the same as the Krull dimension
of the ring) is four, not three. On the other hand, the relative dimension of Spf R
over Spf Z,, is indeed three.

Representable functors and fiber products

Suppose we are working in some category, and we are given objects A, B, and C
and maps @ : A — C and f : B — (. Visualize this as the beginning of a
commutative diagram

A&C/BB

which we want to complete to a commutative “diamond.” If a “universal” solution
to this problem exists, we call it the fiber product of A and B over C, which we
denote by A X B. This comes with maps p: Axc B — Aandq: AxcB — B
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such that the diagram
A X B

N
\/

commutes, and is the universal such object in the following sense. Suppose we have
another ring D and maps D — A and D — B such that the diagram

A/D\B
N s

is commutative. Then there exists a unique map D — A x¢ B through which
both the maps D — A and D — B factor. It is easy to see that if the fiber
product exists it is unique up to unique isomorphism.

In the category of sets, the fiber product is given by

Axc B ={(a,b) € Ax B|ala) =p5(b)}.
Problem 2.16. Check that this set does have the universal property described above.

Now let’s consider this in the context of representable functors. We continue
to work in a general category. If R and S are objects of our category, we write
Hom(R,S) for the set of morphisms from R to S. Then we can translate the
universal property of the fiber product into the statement that for any object D we
have

Hom(D, A x¢ B) = Hom(D, A) Xt1om(p,c) Hom(D, B),

since the set on the right consists exactly of the pairs of morphisms D — A
and D — B that make the diagram commute. If we think of D as the object
representing a functor from our category to sets given by F(R) = Hom(D, R), we
can read this statement as saying that “representable functors commute with fiber
products.” In other words, if F is a representable functor from a category where
fiber products exist to the category of sets, then we have

F(A x¢ B) = F(A4) xp(c) F(B),

where of course the object on the right is a fiber product of sets. Following Mazur,
we will call this property the Mayer-Vietoris property of representable functors.
For general functors, all we know is that F(A x¢ B) fits into the diagram

(AXCB

/ \(q
F(CN / F(3)



30 F. Q. GOUVEA, GALOIS DEFORMATIONS

Hence, by the universal property of fiber products, we get a map
F(A x¢ B) — F(4) xp(c) F(B),

but a priori there is no reason to expect this map to have any special properties.
On the other hand, when F is representable, this function will be a bijection.

The upshot of this discussion is the following: when we are working in a category
in which fiber products exist, the Mayer-Vietoris property is a necessary condition
for a functor to be representable. As we will see below, it is very close to being also
sufficient.

How can we apply this in our situation? It turns out that we cannot apply

it to C, the category of all coefficient rings (i.e., complete noetherian local rings
with residue field k), but we can use it if we work with the smaller category €° of
artinian local rings with residue field k; this is the main reason to bring up €° in
the first place. The reason is this: if A, B, and C' are commutative rings and a and
B are ring homomorphisms, then A X B has a natural ring structure that makes it
the fiber product in the category of rings. The property of being local is preserved,
and the property of having residue field k is also preserved. But the fiber product
of noetherian rings doesn’t need to be noetherian.
Problem 2.17. Let A =k[[X,Y]], B =k, C =k[[X]]. Let « : A — C be the map
that sends Y to 0 and let § : B — C' be the inclusion of k in k[[X]]. Note that A4,
B, and C are objects of € and that a and 3 are morphisms in €. Show that the ring
A X ¢ B is not noetherian, and hence is not an object of C.

Problem 2.18. Show that if both o and 3 are surjective, then A X B is an object
of G, i.e., a complete noetherian local ring with residue field k, and is the fiber product
of A and B over C in C.

Problem 2.19. Show that if A4, B, and C are in C°, ie., are artinian rings with
residue field k, then A X B is an object of €°.

Problem 2.20. Show that the same is true in the categories C3 and C(A4).

Problem 2.21. Suppose we work in some subcategory Z of the category of commu-
tative rings. Suppose we are given objects A, B, and C' and morphisms A — C and
B — C. Let A x¢ B be the ring-theoretical fiber product, i.e., the ring defined by

AxcB={(a,b) € Ax B|afa) = B(b)}

with the natural operations. Is it true that if A x¢ B is an object of Z then it is the
fiber product in 27 Is it true that if A X B is not an object of Z then there is no fiber
product of A and B over C' in 27

Recall that objects of € are “pro-objects” of €Y, that is, that any object of € is
an inverse limit of objects of C°. To be specific, if R is a complete noetherian local
ring with maximal ideal m, then R/m™ is artinian and we have

R = lim R/m".
n
Suppose that our functor is continuous, which, as we explained above, means that

F(R) = im F(R/m").

(As we noted above, the deformation functors do have this property.) Then F is
completely determined by its values on the smaller category €°.
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Furthermore, it may happen that F is not representable as a functor on C°,
but that there exists an object R of the larger category € such that we have

F(A) = Hom(R, A)
for every artinian coefficient ring A. In this case, we say that the functor F on the
category € is pro-representable.
Problem 2.22. Show that if F' is continuous, then it is pro-representable as a functor
on CY if and only if it is representable as a functor on C.

It is easy to see that pro-representable functors have the Mayer-Vietoris prop-
erty. In fact, this is quite close to being a sufficient condition for a functor on @°
to be pro-representable.

To state the exact theorem, let’s introduce the coefficient ring of “dual num-
bers,”

k[e] = k[X]/(X?)

where ¢ = X (mod X?). If we are working with coefficient A-algebras, we make
kle] into a A-algebra via the map

A — A/my =k = k[e].
Then we have:

Theorem 2.5 (Grothendieck). Let
F: (3?\ ~ Sets

be a (covariant) functor such that F(k) consists of a single element. Then F is
pro-representable if and only if

i. F satisfies the Mayer- Vietoris property, and
ii. F(k[e]) is a finite set.

For the proof, see [67].

The statement of this theorem is one of the few places where we are really using
our assumption that k is a finite field, but we are using it only to state this result
before having explained why F(k[e]) is a k-vector space. Once we know that, we
can replace the finiteness assumption above with finite dimensionality over k.

As Mazur says in [101], this result “is easy to prove (it is a good exercise)
but ... is difficult to use because its hypothesis is hard to check.” The problem
of course, is that the Mayer-Vietoris condition involves checking something for all
diagrams

A&C/BB

That is clearly hard to do in general. Schlessinger’s theorem (to be discussed in
the next lecture) should be viewed as basically a simplification of this result. On
the other hand, see the complements to Lecture 3 for a proof that proceeds directly
from Grothendieck’s theorem.

The finiteness (or finite-dimensionality) condition is there to guarantee that the
representing object is noetherian. If we were willing to work in a larger category
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(e.g., the category of all A-algebras which are inverse limits of objects of €3), then
we could drop this finiteness assumption (which in fact is not in Grothendieck’s
original theorem).

Problem 2.23. (Some category theory needed.) Show that the first condition in the
theorem, together with the condition that F (k) is a singleton, is equivalent to saying
that F preserves all finite limits. (Grothendieck calls functors which preserve all finite
limits left exact.)

The tangent space

For this section, we fix a coefficient ring A and work in the category €y of coefficient
A-algebras. We let my denote the maximal ideal of A. Let R be a coefficient A-
algebra, and let mg be its maximal ideal. The Zariski cotangent space of R is
defined to be

th = mp/(mp, ma),
where
(m%, mp) = m¥% + (image of my)R
is the ideal of R generated by the square m% of the maximal ideal of R and the
image in R of the maximal ideal of A. Notice that ¢}, is a module over A/my, that
is, it is a k-vector space.
The Zariski tangent space of R is, of course, the dual of the cotangent space:
tp = Homk(mR/(m%, my ), k).
Since R is noetherian, t} is a finite-dimensional vector space, so that there is no
problem with the duality here.

Problem 2.24. Let R be a noetherian local ring with residue field k and define the
tangent space tg as above. Prove that tg is a finite-dimensional vector space over
R/mp. Is the converse true? (Well, first of all, what would the converse say?)

Problem 2.25. Let f : B — A be a morphism in Cy. Show that f induces a
k-linear transformation f, : t}; — t% of cotangent spaces. Show that f is surjective
if and only if £, is surjective. (This is Lemma 1.1 in [125].)

Problem 2.26. Use the duality between the tangent and cotangent spaces to rein-
terpret the previous problem in terms of tangent spaces.

Suppose we have a functor F as above which is represented by R. We’d like to
reinterpret this construction in terms of the functor. The crucial observation is the
following.

Lemma 2.6. IfF is a functor which is represented by R, there is a natural bijection
Homk(mR/(m%ﬁ mA)a k) = Homp (Ra k[g]),

where Homy means k-vector space homomorphisms and Homp means homomor-
phisms of coefficient A-algebras.

The basic point is that a homomorphism of coefficient A-algebras
R — Kle],
because it must induce the identity on residue fields, must have the form

r =T+ p(r)e,
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where 7 = r (mod m) denotes the image of r in the residue field k, and ¢(r) € k.
Furthermore, since the map must be a homomorphism of A-algebras, ¢ is completely
determined by its values on elements r € mg. Working out what ¢ must look like
yields the Lemma.

Problem 2.27. Fill in the details to give a proof of the Lemma.

We have shown, then, that if a functor F is represented by a coefficient A-
algebra R, then F(k[e]) = tg, at least as sets. To make this really work, we have to
explain how to think of F(k[e]), which a priori is just a set, as a k-vector space. Of
course, we want to do that in such a way as to make the bijection in the Lemma
be k-linear, and therefore an isomorphism of k-vector spaces.

It turns out that there is a natural vector space structure on F(k[e]) that arises
simply from the fact that F is a reasonably nice functor. One part of this is easy:
an element « of k gives an automorphism of k[e] by

a+ be — a+ abe,

(ves, this is actually a ring homomorphism!) and therefore, by functoriality, gives
an automorphism of F(k[e]). This gives a scalar multiplication by k.

The addition is a bit harder. Since we are assuming that F is representable,
we know it has the Mayer-Vietoris property. We apply it to the diagram

k[e] kle]
V%

where both arrows are the canonical projection onto the residue field. Since there
is only one coefficient A-algebra homomorphism R — k, F(k) consists of only one
element, and therefore the fiber product F(k[e]) xg() F(k[e]) is just a product.
Hence the Mayer-Vietoris property says, in this situation, that

F (k[e] xi k[e]) = F(k[e]) x F(k[e]).
Now, we have a homomorphism of coefficient A-algebras

p : kle] xg kle] — k[¢]

defined by

p(z +yie,z+y2e) =+ (y1 +y2)e.

(The notation p is meant to recall “plus,” or perhaps the abbreviation of “piu”
used by the early Italian algebraists.) Then we put all this together to define the
addition: the composition

F(k[e]) x F(k[e]) = F (K[e] xi kle]) —25 F(k[e])

gives the vector addition.
Problem 2.28. Check everything! In particular, check that if F' is represented by R,
then

i. p is indeed a homomorphism of coefficient A-algebras,

ii. these two operations do make F' a vector space over Kk,
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iii. with these definitions the natural bijection in Lemma 2.6 is in fact an isomorphism
of k-vector spaces.

The reason to go through this effort of translation is the following: we can now
try to define the “tangent space of a functor” by following this template. Of course,
we did need to use the Mayer-Vietoris property, but we used it only for the specific
diagram above. So we have in fact proved the following:

Proposition 2.7. Let
F:C} ~ Sets

be a (covariant) functor such that F(k) consists of a single element. Suppose that
the natural map

F(kle] xi ke]) — F(k[e]) x F(k[e])
is a bijection. Then F(k[e]) has a natural vector space structure over k.

Problem 2.29. In the discussion above, we were assuming that F was represented
by R. So to prove the proposition we need to check that the only properties of F that
we really used are the ones listed in the statement of the proposition. Do that.

We will refer to the assumption that the map
F(kle] xi k[e]) — F(k[e]) x F(k[e])

is a bijection as the tangent space hypothesis over k. When it is satisfied, we will
write

tr = F(k[e])

and call this the tangent space of the functor F.

In [101], Mazur suggests that we say the functor F is nearly representable if it
satisfies the tangent space hypothesis and the tangent space tg is finite-dimensional
over k. See Mazur’s article for further discussion, and also for a discussion of how
to adapt this to the “relative” case in which the category is Cy (4).

Finally, we note in passing another interpretation of the tangent space:
Problem 2.30. Show that tg is naturally isomorphic to Dery (R, k), the k-vector
space of A-algebra derivations from R to k. (This is another reason to think of tg as
the tangent space.)

Complements to lecture 2

The language of categories and functors is a particularly convenient way to think
about the deformation theory. Basically, category theory tries to make precise the
idea that in a mathematical “universe of discourse” there is typically a collection of
objects which we study (e.g., sets, groups, rings, topological spaces, complete noe-
therian local rings with residue field k, etc.), and for each such collection of objects
we have a “correct” notion of function between our objects (e.g., for the list above,
they would be: functions in general, group homomorphisms, ring homomorphisms,
continuous functions, local homomorphisms inducing the identity on residue fields).
Such a “universe of discourse” is called a category.

Functors connect different categories, transforming the objects of one to objects
of the other and doing the same to the functions, while preserving some obvious
structure (the identity function and compositions of functions). We could even
speak of a “category of categories,” in which the appropriate functions would be
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the functors. The functors we are interested in are set-valued, that is, they associate
a set to each coefficient rings. Mathematics is full of functors, but the most famous
ones are certainly the various functors that attach algebraic objects to various
geometric objects (homology and cohomology, etc.).

Making this impressionistic description precise is the business of category the-
ory, of which we need only a small amount. The basic notions are discussed in
most algebra textbooks; for example, see [90, I, §11]. For more information, a good
reference is MacLane’s [92], which contains much more material than we have used
(or will use).






LECTURE 3
The Universal Deformation: Existence

Our goal for this lecture is to prove that, under suitable hypotheses, the de-
formation functor is indeed (pro-)representable. Our proof will be very similar to
Mazur’s original proof (in [97]; see also [8], [10], [9], [115]), which is based on
Schlessinger’s criteria for pro-representability of a functor on a category of artinian
rings first given in [125].

Since the publication of [97], several other approaches to proving the repre-
sentability of the deformation functor (or, equivalently, the existence of a universal
deformation) have been found. One is a “direct” approach that constructs the uni-
versal deformation ring by generators and relations from what is known about the
Galois group. Constructions in this style have been given by Faltings (see [34])
and by Lenstra and de Smit (see [36]). We will see a little bit of this point of view
when we discuss “explicit” deformations.

Another approach is based on the notion of a “pseudo-character,” which is
basically a function that “looks like” the character of a representation. This has
been studied by Nyssen [113] and Rouquier [121], who find conditions for a pseudo-
character to be the trace of a representation and use them to construct the universal
deformation.

As before, k will denote a finite field of characteristic p and IT will denote a
profinite group satisfying hypothesis ®,. We will assume we are given a residual
representation

p: I — GL, (k)

whose lifts we want to understand.

We let € stand for the category whose objects are complete noetherian local
rings with residue field k and whose morphisms are local homomorphisms which
induce the identity on k. We use the shorthand expression “coefficient ring” for
an object of C. We let €° be the full subcategory of € whose objects are artinian
coefficient rings. If A is an object of €, we write €y for the category whose objects
are complete noetherian local A-algebras with residue field k and whose morphisms
are local A-algebra homomorphisms which induce the identity on residue fields. We
use the shorthand expression “coefficient A-algebra” for an object of C5. Finally,
we write €} for the full subcategory of artinian local A-algebras with residue field k.

If R is a coefficient ring, we write I',,(R) for the kernel of the map GL,(R) —
GL, (k) given by reduction modulo the maximal ideal, so that I';,(R) = 1+ M, (m),

37
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i.e., it consists of matrices whose off-diagonal elements are in m and whose diagonal
elements belong to 1 4+ m.

Given the residual representation p, we have defined set-valued covariant func-
tors D and D whose value on a coefficient ring (resp, a coefficient A-algebra) R is
the set of deformations of p to R. The functors depend on p, of course, but since p
will usually be fixed throughout we omit it from the notation; if it is necessary to
emphasize the dependence on p, we will write D5 and D5 A, respectively.

Schlessinger’s criteria

As we saw above, we can think of the deformation functor D (or Dy ) as a functor
on the category €% (or €}) of artinian coefficient rings (or A-algebras). From this
point of view, our goal is to show that these functions are pro-representable. As
we saw from Grothendieck’s theorem, pro-representability is closely related to the
Mayer-Vietoris property, that is, to how our functors act on fiber products. In
[125], Schlessinger obtained a set of criteria for pro-representability of functors on
categories of artinian rings which are much easier to apply. In this section, we recall
Schlessinger’s criteria in preparation for using them, in the next section, to prove
that the deformation functors are pro-representable.
Let F be a covariant functor

F : €} ~ Sets,

and assume that F(k) consists of one element. We want to give sufficient conditions
for F to be pro-representable by a ring R in C,.

In general, if R is an artinian coefficient A-algebra, we write mpg for the maximal
ideal in R. If R and S are two coefficient A-algebras, we say a homomorphism

¢o:R— S

is small if it is surjective and if Ker(¢) is principal and is annihilated by mg.

Problem 3.1. Show that any surjective homomorphism in €} factors as the compo-
sition of small homomorphisms.

The prototypical example of a small homomorphism, which will be of great
importance in what follows, is the homomorphism

kle] — k,

where k[e], as above, is the ring of dual numbers.
To set up the Schlessinger criteria, consider rings Ry, Ri, and Ry in €}, and
suppose we have morphisms

Ry Ry
N
Ry

Let
R3 = Ry XR, Ry = {(r1,72) € R1 X Ry | ¢1(r1) = ¢2(r2)}
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be the fiber product of Ry and Ry over Ry, which is again an artinian coefficient
A-algebra. Since F is a functor, we get a map

() F(R3) — F(Ry) Xp(r,) F(R2)

If F is representable, we know (this is just the Mayer-Vietoris condition again)
that the map (%) is a bijection. We also know that if (x) is a bijection in the
case where R; = Ry = kle] and Ry = k, then F(k[e]) has a natural k-vector space
structure.

Now we can state the Schlessinger conditions, which we label as H1, H2, H3,
and H4 (the “H” stands for hull; see below). They are basically a weakened form
of the conditions in Grothendieck’s theorem. The first two specify that the map
(%) should be nice when the map Ry — Ry is particularly simple.

H1: If the map Ry — Ry is small, then (%) is surjective.
H2: If Ry = k and Ry = k[¢], then (x) is bijective.

If H2 holds, applying it to the case when Ry = Ry = k[e] shows that the tangent
space hypothesis over k is satisfied, and hence we can think of tp = F(k[e]) as a
k-vector space; as before, we call this the tangent space of F. Schlessinger’s third
condition is:

H3: The vector space tg = F(k[e]) is finite-dimensional.
The fourth condition is another Mayer-Vietoris variant:

H4: If Ry = R, the maps R; — Ry are the same, and R; — Ry is small,
then (x) is bijective.

Theorem 3.1 (Schlessinger). Let F be a set-valued covariant functor on €} such
that F (k) has exactly one element. If F satisfies conditions H1 to H4, then F is
pro-representable. In particular, there exists an object R of Co such that F(A) =
Hom(R, A) for every A in €.

Schlessinger’s theorem is in fact more general: he shows that if F satisfies only
conditions H1 to H3 then it has a “hull” which satisfies some of the properties one
would expect the representing object to have. (See [125], [101], and the problems
at the end of this section for more discussion of what this means.) This is the
reason for the otherwise rather peculiar ordering of the four conditions.

It’s also worth noting that since representable functors do satisfy all four con-
ditions, the theorem gives necessary and sufficient conditions for representability.
Similarly, H1 to H3 are necessary and sufficient conditions for the existence of a
hull.

Let d = dimytgp. The proof constructs R as an inverse limit of quotients of
Al[X1,X5,...,X4]]. See [125] for the details. It is probably worth pointing out
that the proof does not give much information about the resulting ring beyond the
fact that it is a quotient of A[[X, Xo, ..., X4]].

We'll often want to apply Schlessinger’s criteria to a subfunctor of a functor
which we already know is representable. It turns out to be quite easy to do this.
We say a set-valued functor F; on €3 is a subfunctor of F if, for every coefficient A-
algebra R, we have F1(R) C F(R). (If we want to be more precise, we’d have to say
that there exists a natural transformation F; — F which induces the inclusions
Fi(R) C F(R) for every R.)
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Proposition 3.2. Let Fy be a subfunctor of F such that F1(k) = F(k) is a single-
ton, and suppose ¥ is pro-representable, and so satisfies conditions H1 to Hj. If
F satisfies condition H1, then ¥ satisfies the other three conditions, and therefore
s also pro-representable.

Problem 3.2. Prove the proposition. (The main point is that the restriction of an
injective homomorphism is automatically injective.)

Problem 3.3. Check that the proposition is also true if we replace “is pro-representable”
by “has a hull” (equivalently, if we omit property H4) in both hypothesis and conclusion.

Problem 3.4. In the situation of the proposition, let R be the coefficient A-algebra
that represents F. Prove that the object representing F; is a quotient of R.

An alternative approach is suggested by Mazur in [101], which does not depend
on knowing that F is pro-representable. We need one bit of language first: in any
category where fiber products exist, let’s say that a diagram

A/D\B
N

is Cartesian if the induced map D — A X B is an isomorphism. Now suppose F
is a subfunctor of a covariant set-valued functor on €3, and suppose that Fy(k) =
F(k). Given a diagram in €3

A B
N S
c
we consider the commutative square

Fl(A Xc B) —_— Fl(A) XFl(C’) Fl(B)

| |

F(A Xc B) E— F(A) XF(C) F(B)

in which the vertical arrows are inclusions and the horizontal arrows are obtained
as in our previous discussion. If every such diagram is Cartesian, Mazur says that
F, C F is relatively representable.

Problem 3.5. Show that if F; C F is relatively representable, then, for each i, F;
satisfies Hi if F' does, and similarly for the tangent space hypothesis.

The point, then, is that Mazur’s condition allows one to transfer each property
separately, while our previous theorem only applies when we already know that F is
pro-representable. Nevertheless, in most of the cases with which we will be working
the deformation functor will indeed be pro-representable, so that Proposition 3.2 is
good enough.
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Universal Deformations exist

We now apply Schlessinger’s theorem to the deformation functor
Dy : Cp ~» Sets
given by
Dy (R) = {deformations of 5 to R}.

As we will see, the first three conditions will always hold, but the fourth will depend
on what p is.

Definition 3.1. Let p be a residual representation. We let
C(p) = Homp(k™, k™) = {P € M, (k) | Pp(g) = p(g)P for all g € IT}.

As the definition suggests, we can think of k™ as a II-module via p, and then
C(p) is its ring of I-module endomorphisms. More generally, if A is a coefficient
A-algebra and p is a deformation of p to A, we can use p to make A™ a II-module,
and then make the analogous definition:

Definition 3.2. Let p be a residual representation, and let p be a deformation of
p to a coefficient A-algebra A. We define

Ca(p) = Homp (A", A™) = {P € M,,(A) | Pp(g) = p(g)P for all g € IT}.

In particular C(p) = Ck(p). We will be especially interested in the case where
C(p) = k, that is, where the only matrices in My, (k) that commute with the image
of p are the scalar matrices.

Theorem 3.3 (Mazur, Ramakrishna). Suppose I1 is a profinite group that satisfies
property ®,, p: II — GL, (k) is a continuous representation, and A is a complete
noetherian ring with residue field k. Then the deformation functor Dy always
satisfies properties H1, H2, and H3. Furthermore, if C(p) = k, then Dy also
satisfies property HJ.

Mazur essentially proved this theorem in [97], except that he showed property
H4 under the assumption that p is absolutely irreducible. Ramakrishna pointed
out in [115] that the hypothesis could be weakened as above. Note that by Schur’s
Lemma (see below) we do know that C'(p) = k when p is absolutely irreducible.

We will prove the theorem by a series of lemmas. We fix the following notation
throughout.

Let Ry, Ry and Ry be artinian coefficient A-algebras, and suppose we are given
¢1: Ry — Ry and ¢ : Ry — Ry as above. Let

E; = Homp(II, GL, (R;))
be the set of homomorphisms from II to GL,(R;) which reduce to p modulo the
maximal ideal. Then I'y,(R;) acts on E; by conjugation and (because deformations
are strict equivalence classes of homomorphisms) we have
Da(R;) = E; /Ty (R;).
The only difficulties in the proof arise in passing to the quotient from E; to Dy (R;).
The map in (x) is
b: E3/Fn(R3) — El/Fn(Rl) X Ey/Tn(Ro) EQ/Fn(RQ)

If Ry — Ry is surjective, then I'y(Ry) — I[',(Ro) is also surjective (see prob-
lem 3.24).
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Lemma 3.4. Property H1 is true.

Proof. Suppose Ry — Ry is small (in fact, all we need to know is that it is
surjective). We want to show that if we have a pair (p1, p2) of deformations to R;
and Ry which induce the same deformation to Ry, we can paste them together to
get a deformation to R3. This is clear for homomorphisms (i.e., for elements of
E;), so we need to check that we can pick representatives for the strict equivalence
classes so that they “match” when projected down to Ryp.

To do this, we pick any two representatives ¢; and ¢,. The assumption is that
their images in Ry are strictly equivalent, so that there is an element M of T',,(Ry)
such that conjugating the image of ¢» by M gives the image of ¢1. Since Ry — Ry
is surjective, so is I',,(R2) — [, (Ro); hence, we can lift M to M € T,,(Ry). Then
#1 and M ~'¢o M are group homomorphisms that have the same image in GL,,(Ry),
and hence they define a homomorphism ¢3 € E5. The strict equivalence class of ¢3
maps to (p1, p2), and so we have proved that (x) is surjective. O

This settles H1, but we still need to consider when it is that b is injective. For
this, we call on two lemmas. Let ¢ € E5 and let ¢g € Ey be its image. Set
Gi(¢;)) ={g9g € Th(R;) | g commutes with the image of ¢; in GL,(R;)}.
(Note that this is similar but not identical to Cg,(¢;) defined above. In particular,
this is a subgroup of I',,(R;) while the other is a ring.) The first result is:
Lemma 3.5. If for all ¢ € E5 the map

G2(¢2) — Gol(eo)

is surjective, then the map b is injective.

Proof. Suppose ¢ and 1 are elements of E3 that induce elements ¢; and v; in E;
for each i = 0,1, 2. Saying that ¢ and ¢ have the same image under (*) means that
for each i = 1,2 there is an M; € I',(R;) such that ¢; = M, "¢); M;. Mapping down
to Ey we see that

-1 — -1 —
¢o =M oMy = My tpogM3,

and so that MM, = commutes with the image of ¢y, i.e., MaD, = € Go(do).

Now use the surjectivity assumption to find N € G2 (¢2) which maps to M2M;1.
Let Ny = N~1M,. Then we have

Ny o Ny = My 'NepoN " My = My " po My = ¢o.
On the other hand, the image of Ns in T';(Ryp) is

— _— 1= —
Ny = (M,yM, )""My =M,.

Since M; and N, have the same image in I',(Rp), the pair (M;, N2) defines an
element M € T'p(R3) and we have M~1)M = ¢. Thus, ¢ and ¢ are strictly
equivalent, and we are done. O

Lemma 3.6. Property H2 is true.

Proof. If Ry = k and Ry = k[¢], then we already know (x) is surjective by HI.
Injectivity will follow if we know that the map Ga(¢2) — Go(dp) is always sur-
jective. But when Ry = k, Gy = I';,(Ro) consists only of the identity matrix, and
Go(¢o), which is a subgroup, is again just the identity. So the surjectivity holds
(trivially) and we are done. O
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Lemma 3.7. Property H3 is true.

Proof. Let IIp = Kerp and let p be a lift of p to k[g]. If € Iy, we have
p(z) =1, and hence p(z) € T',(k[g]). Hence, p determines a map from Iy = Kerp
to ['n(k[e]). Two lifts that determine the same map must be identical. Now, Il
is an open subgroup of I and by problem 3.23, we know T',(k[e]) is a (finite) p-
elementary abelian group. By property @, there are finitely many maps I, = Kerp
to T'n(k[e]). Hence, Dy (k[e]) is a finite set, and we’re done. O

Problem 3.6. This proof relies, once again, on the fact that k is a finite field. Is it
possible to modify it to cover the case of an infinite field of characteristic p?

Lemma 3.8. If C(p) = k, then for any i the group Gi(¢;) C Ry, i.e., Gi(;)
consists of the scalar matrices in T'p(R;).

Proof. We prove the stronger assertion that for any deformation p of p to an
artinian coefficient ring A we have C4(p) = A. Our argument follows the one given
in [42].

Since the map A — k is surjective, it factors as a sequence of small extensions.
Since we know that Ck(p) = k, the lemma will follow, by induction, from the claim
that if Cp(pp) = B and A — B is small, then Cx(p4) = A.

To prove this, take ¢ € C'4(pa). By our assumption, the image of ¢ in M,,(B)
is a scalar matrix. Suppose ¢ — T, where the scalar 7 € B is the image of r € A.
Then we can write ¢ = r + tM where t is a generator of the kernel of A — B and
M € M, (A).

Now, ¢ commutes with the image of p4, so that we must have, for every g € II,

(r+tM)pa(g) = palg)(r +tM),
which, since scalars commute with everything, boils down to

Mpa(g) = palg)M.

Reducing modulo the maximal ideal m4 and using the fact that C(p) = k, we see
that M must be of the form M = s+ M, where s € A is a scalar and all the entries
of My belong to my. But, since A — B is small, we have tm4 = 0, from which it
follows that M = r + ts is a scalar. |

Problem 3.7. Show that if C'(p) = k then two lifts p and p’ of p to a coefficient
A-algebra A are equivalent if and only if they are strictly equivalent.

Lemma 3.9. Suppose C(p) = k. Then property Hj, is true.

Proof. From the previous lemma, G;(¢;) consists only of scalars (of the form
1+ mp,, in fact), and the lemma follows. O

The upshot is:

Theorem 3.10 (Mazur, Ramakrishna). Suppose Il is a profinite group satisfying
condition ®, and

7:1 — GL, (k)

is a continuous representation such that C(p) = k. Then there ezists a ring R =
R(I1,k,p) in Co and a deformation p of p to R,

p: 11 — GL,(R)
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such that any deformation of p to a coefficient A-algebra A is obtained from p via
a unique morphism R — A.

We call R the universal deformation ring and p the universal deformation of
p. The ring R(I1, k, p) is unique in the following strong sense.

Theorem 3.11 (Mazur). Suppose
p: I — GL, (k)

is a continuous representation such that C'(p) = k. If p' is a representation equiva-
lent to p®x, where x is a representation of dimension one, then there is a canonical
isomorphism

r(p',p) : R(IL, k, p) — R(I,k,p")

mapping the universal deformation of p to the universal deformation of p’. This
system of canonical isomorphisms satisfies the natural compatibility conditions.

Proof. This is basically immediate from the definition. See the next lecture for
some hints about what is involved, and [97] for the details. O

Absolutely irreducible representations

Given the important role of the hypothesis that C(p) = k in the theorem, it’s im-
portant to ask which representations have this property. The most important part
of the answer is Schur’s Lemma, which says absolutely irreducible representations
satisfy the condition C(p) = k.

Definition 3.3. A representation p : I — GL,, (k) is called reducible if the rep-
resentation space k™ (with the IT-action given by p) has a proper subspace that is
invariant under the action of II. It is called irreducible if no such subspace exists.
Finally, we say that p is absolutely irreducible if there is no extension k’/k such that
p Qk k' is reducible.

The idea of “absolute” irreducibility is just this: it’s perfectly possible for a
representation to have no invariant subspaces as given, but for the subspaces to
appear once we move to a larger field. For example, suppose we send a cyclic group
of order 4 to GL2(R), representing the generator by a ninety degree rotation. Then
this representation has no fixed lines (i.e., no real eigenvalues). But if we base-
change to C, two fixed lines will appear. Hence our representation was irreducible
but not absolutely irreducible.

Problem 3.8. Let k be an algebraic closure of k. Show that 5 is absolutely irreducible
if and only if p ® k is irreducible.

The main reason we like absolutely irreducible representations is the following
result:

Theorem 3.12 (Schur’s Lemma). If p : II — GL, (k) is absolutely irreducible,
then C(p) = k.

The proof can be found in any standard text on group representation theory.
For example, see page 7 of [55].

Hence, absolutely irreducible representations have universal deformations. Of
course, there are other representations that satisfy C'(p) = k. The following prob-
lems ring some changes on these ideas.
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Problem 3.9. Find an example of a reducible representation which nevertheless sat-
isfies the condition C(p) = k.

Problem 3.10. Show that if 5 : [ — GL2 (k) is irreducible and its image contains
an element of exact order 2 and determinant —1, then C'(5) = k. (The case of
characteristic 2 has to be considered separately.)

Problem 3.11. Show that p: I — GLs(k) is absolutely irreducible if and only if it
is irreducible and C(p) = k. (The same is true for representations to GL,(k), but it’s
slightly harder to prove.)

Problem 3.12. We can extend a representation p : II — GL, (k) to a continuous
homomorphism of k-algebras

7+ K] — M (k).

Show that 7 is absolutely irreducible if and only if f5 is onto. (Note that Schur’'s Lemma
follows from this result.)

Example: the case n =1

As we will see in the next section, it can often be quite difficult to get concrete
information about the universal deformation ring. In this section, we look at one
example in which it is possible to get a complete description.

Let’s consider, then, what happens when n = 1. If we consider the uniqueness
statement above, we see that the deformation ring in the one-dimensional case does
not depend (up to canonical isomorphism) on the representation at all (of course,
the universal deformation does depend on the representation). We will confirm that
by constructing the ring directly.

So let’s start with a one-dimensional representation, that is, a character

p=x:1I — k* = GL; (k),

and try to describe the deformation ring explicitly. The basic idea is as follows:
there is a canonical (“Teichmiiller”) lift of ¥ to the ring of Witt vectors W (k),
and thence to A (which is a W (k)-algebra. Once that lift is given, the “rest” of
any lift must differ from this one by a homomorphism with values in an abelian
pro-p-group, and these we can describe in a somewhat explicit manner.

So let T = I1*P+(P) he the abelianization of the pro-p-completion (see Lecture 2
for the definition) of II, and let v : Il — T be the canonical projection. Note that
any map from II to an abelian pro-p-group must factor through T'.

Problem 3.13. Prove that any homomorphism from II to an abelian pro-p-group

must factor through the abelianization of its pro-p-completion. (Easy, but helps you
remember the definitions.)

Problem 3.14. Is there a difference between the abelianization of the pro-p-completion
and the pro-p-completion of the abelianization?

Problem 3.15. Let II = Gg,s. Describe I'. (Use the description of the abelianization
of IT in Lecture 1. You'll need to distinguish the cases p € S and p ¢ S.)
Problem 3.16. Let IT = Gg,. Describe I'. (Use the description of the abelianization
of IT in Lecture 1. You'll need to distinguish the cases £ = p and £ # p.)

As usual, we will let A be a coefficient ring and work in the category Cp of
coefficient A-algebras. (If we want to work with all coefficient rings we just take



46 F. Q. GOUVEA, GALOIS DEFORMATIONS

A =W (k).) Let A[[T']] be the completed group ring over A, that is,
A[[T]) = lim AL/ H]
H

where H ranges through the open normal subgroups of I' and A[['/H] is the usual
group ring of the (finite) group I'/H over A. If u € T', we write [u] for the corre-
sponding element in the group ring.

Problem 3.17. Show that A[[T']] is a coefficient A-algebra, i.e., an object of Cx.

Since A is a complete noetherian ring, and hence is henselian, the units of A
split (canonically) into a product:

A 2 kX x (14 my).

Using this splitting we get a canonical lift of ¥ to A, which we will call xq : T — A.
Now we can state the theorem. Recall that v : II — T' is the canonical
projection. Then we have:

Proposition 3.13. The universal deformation ring for a character x : II — k*
is R(I, k,x) = A[[T']] and the universal deformation is given by
x(z) = xo(z)[y(z)].

Proof. First of all, we know, by hypothesis ®,, that I is finitely generated as a
Zymodule. If r is the number of generators, then we know that A[[I'] is a quotient
of the power series ring A[[X1, Xa,...,X,]], and hence is a coefficient A-algebra.
It’s also clear that x is a character. It remains to show, then, that this is indeed
the universal deformation.

Consider, then, a lift xy : I — A* to some coefficient A-algebra A. Let
P = Xglx. Then it’s clear that v is a character of II taking values in 1 + my.
Since 1 +my4 is an abelian pro-p-group, ¢y must factor through the homomorphism
v : I — T'; this defines amap f, : I' — 14+m4 which extends to a homomorphism
of A-algebras f, : A[[I']] — A. We then have x = f, o x. Thus, A[[I']] is the
universal deformation ring and x is the universal deformation of y. O

Note that, as we pointed out above, A[[I']] is independent of .
Problem 3.18. Check that 1 + my is indeed a pro-p-group.
Problem 3.19. Given two characters Xy, x, : II — k*, Theorem 3.11 says that
there must be an isomorphism

(X1, X2) « A[[T]] — A[[T]].

Can you describe this isomorphism?

Here’s an interesting consequence of this calculation. Suppose we have a resid-
ual representation

p: I — GL, (k).

Then we can look at its determinant, det p, which is a one-dimensional represen-
tation. If p is a deformation of p to a ring R, then clearly det p is a deformation
of detp to R. In particular, it follows that det p is a deformation of detp to the
universal ring R(II, k, 5). By universality, it follows that there is a map

A[IT) — R = R(IL k, 7).

This homomorphism, which we will call the determinant homomorphism, makes R
a A[[[']]-algebra. This extra structure is sometimes important.
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Problem 3.20. Let K = Q, p be an odd prime, S = {p}, A =Z,, and Il = Gy 5.
Show that I' = 1 + pZ,, and therefore that the deformation ring Z,[[I']] is the usual
“lwasawa algebra.”

Extra Problems

This section collects a few extra problems related to the material in this lecture.
First, a case where the deformation theory is easy to compute.

Problem 3.21. Suppose II is a finite group of order not divisible by p, and suppose
that 5 : I — GL,, (k) is an inclusion. Show that there exists a lift of o to GL,, (17 (k))
(and hence, via the canonical map W (k) — A, to GL,,(A)). Show that every defor-
mation of p factors through this lift, and hence that the universal deformation ring is
Rz =A.

For other subgroups of GL,,(k), the problem is much harder. For example:

Problem 3.22. Suppose IT = SL, (k) € GL, (k) and p is the inclusion. Can you
determine the universal deformation ring?

The next two problems have to do with the group I';,(R), i.e., the kernel of the
reduction map from GL,(R) to GLy (k).

Problem 3.23. Show that I',,(k[¢]) is a finite p-elementary abelian group.

Problem 3.24. Show that if R — S is a surjective homomorphism in €} then the
induced homomorphism of groups

I.(R) — T',(S)
is also surjective.

Finally, a few problems related to the notion of a “pro-representable hull” (the
definition appears below).

Problem 3.25. Suppose F and G are set-valued functors on € such that both F (k)
and G(k) are singletons. We say that a morphism of functors ¢ : F — G is smooth
if, given any surjective homomorphism B — A of artinian coefficient A-algebras, any
element f € F(A) and any lifting of {(f) € G(A) to an element g € G(B), there
exists a lifting f' € F(B) of f such that £(f') = g¢.
i. Show that this condition is equivalent to saying that for any surjective homomor-
phism B —» A of artinian A-algebras the natural mapping

F(B) — F(A) xg1) G(B)

is surjective.

ii. Show that we can replace CQ by C, in the definition.

iii. Show that if F — G is smooth, the map F(B) — G(B) is surjective for every
coefficient A-algebra B.

iv. Suppose F is represented by a coefficient A-algebra R and G is represented
by a coefficient A-algebra S. Then a morphism F — G corresponds to a
homomorphism S — R. If F — G is smooth, what does that tell you about
the corresponding ring homomorphism?

If R is an object of Cx, let hr denote the functor Hom(R, - ) that maps each
coefficient A-algebra A to the set Hom(R, A).

Problem 3.26. Suppose F is a functor on €} such that F(k) is a singleton. Show
that any element p € F(R) induces a morphism of functors hgy — F.
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Problem 3.27. Let R; and R, be coefficient A-algebras and let ¢ : Ry — Rs be a
homomorphism. Show that the following statements are equivalent:

e The homomorphism ¢ : Ry — R» is surjective.

e The corresponding morphism of functors hr, — hpg, is injective.
Problem 3.28. Suppose F is a functor on €3 such that F(k) is a singleton, R is a
coefficient A-algebra, and p € F(R). We say the pair (R, p) is a pro-representable hull
for F if

e the map hg — F induced by p is smooth, and

e the induced map tg — tF of tangent spaces is an isomorphism.
Prove that any two pro-representable hulls for F' are isomorphic.
Problem 3.29. In the situation of the previous problem, prove that if F is repre-
sentable by R, then R (together with the universal element p € F(R) corresponding to
the identity R — R) is a hull of F. Are there other hulls of F?
Problem 3.30. We mentioned above that since the deformation functor D5 always
satisfies conditions H1 to H3, it has a hull (R, p). The representation p is sometimes
called a versal deformation of p. Translate the definition of a hull into deformation-
theoretical terms: what properties does a versal deformation have?

Finally a meta-problem: in this and the following lectures, how much of the
theory survives if all we have is a hull (or a “versal deformation”)?

Complements to lecture 3

Mark Dickinson has given an alternative proof of the main theorem in this lecture
that sidesteps the Schlessinger conditions, working instead with Grothendieck’s
theorem from the previous chapter. See Appendix 1 for Dickinson’s proof.



LECTURE 4

The Universal Deformation: Properties

Now that we have proved that (under certain conditions) universal deformations
exist, we want to find out more about them and about the universal deformation
rings. This turns out, of course, to be quite difficult. In this lecture we will look at
what can be said in general about the deformation ring and its properties. We will
continue to use the notations we established above. In particular, II is a profinite
group satisfying the hypothesis ®,. More and more, however, we want to think of
IT as being either Gk, s for some number field K and some set of primes S including
the archimedean primes or the absolute Galois group of a local field.

Functorial properties

The simplest properties of the universal deformation rings might be described as
“functorial” properties. Basically, they are derived from various constructions in-
volving group representations, together with the universality properties of the uni-
versal deformation. These properties are worked out in detail in [97], and we won’t
spend too much time on them. For this whole section, assume that p satisfies the
condition C(p) = k, so that the deformation functor Dy is representable.

The kind of properties we want to consider here are those which arise simply
from the fact that the functor is representable, together with the fact that GL,, itself
has functorial properties (specifically, it is an affine group scheme of finite type over
Z). One example of this kind of property already appeared in the previous lecture,
when we considered the determinant function

det : GL,, — GL; .

Since the determinant is a homomorphism of affine group schemes over A, it sends
deformations of p into deformations of det p. By the universal property, this gives
a homomorphism of coefficient A-algebras from the completed group ring A[[I]]
(where T’ = T1°*(P) | as defined in the previous lecture) to the universal deformation
ring R(p).

Another example of the same thing is as follows. Suppose we have two resid-
ual representations p and p’ which are equivalent. Then there is a matrix z €
GL, (W (k)) (which we can think of as in GL,(A)) such that p = z-'p'Z. Conjuga-
tion by z is an isomorphism of group schemes over A,

0z : GL, — GL,,

49
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and it transforms deformations of p' into deformations of p. Therefore, it determines
an isomorphism of deformation rings

r(:) : R(p) — R(@).

Problem 4.1. Show that the isomorphism r(4,.) is determined by the representations
p and . (In other words, it does not depend on our choice of the particular matrix
z € GL,(W(k)).)

Since 7(d, ) depends only on the residual representations p and 7', we can denote
it by 7(p’,p). This proves part of the uniqueness assertion in Theorem 3.11.

Problem 4.2. Play the same game with the “transpose-inverse” automorphism of
GL,, to show that the universal deformation ring of 5 and of its contragredient (i.e.,
the representation g — (p(g) 1)!) are canonically isomorphic.

Problem 4.3. Suppose C'(p;) =k, C(p,) =k, and C(p; ® p,) = k, so that all three
representations have universal deformation rings. Given a deformation p; of p; to a
ring A; and a deformation p2 of p, to a ring As, show that the tensor product p; ® p2
is a deformation of p, ® 7, to the ring A;®A,, and deduce a natural homomorphism

R(py ® Py) — R(P)DAR(D,)-

Problem 4.4. Still in the situation of the previous problem, suppose we pick a lift p; of
p1 to GL,(A). By the universal property, this corresponds to a map hy : R(p;) — A.
Use this and the map defined in the previous problem to deduce that there exists a
homomorphism

R(py ®P2) — R(py).
This is called “contraction with the lift p;."

Problem 4.5. In the situation of the previous problem, suppose 7, is one-dimensional,
i.e., is a character. In this case we sometimes refer to the homomorphism obtained in
that problem as the “twisting homomorphism” corresponding to p;. Show that the
twisting homomorphism is in fact an isomorphism and that it satisfies the obvious
“homomorphic” property with respect to p;. (This problem, together with what was
done above, completes the proof of Theorem 3.11.)

We can continue in this vein to consider, for example, what happens when we
change the group II (e.g., by restricting to a subgroup) and what happens when we
change the base field k. See [97] for a careful discussion of all this.

Tangent spaces and cohomology groups

Fix a residual representation p : I — GL, (k) such that C'(p) = k and a coefficient
ring A. For this section, let D = D5 A, in order to make the notation lighter. We
know, then, that the functor D is representable; denote the representing coefficient
A-algebra by R. We have already introduced the tangent space tp = D(k[e]) of the
functor D. Since D is represented by R, we know that

tp = D(k[e]) = Homy (R, k[e]) = Homk(my/(mgz,m,\), k).

This is true for any representable functor; for the deformation functor, we can
say a bit more. Suppose we know p(g) = a, where a is some matrix in GL,(k), and
suppose that p; is a deformation of 5 to k[e]. Then we must have p1(g) = (1+b,4¢)a
for some matrix b, € M, (k). In other words, p; determines (and is determined by)
a map b : II — M, (k) mapping g to the matrix b,. (Equivalently, the point is
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that GL,(k[e]) is the semi-direct product of 1+ &M, (k) and GLy(k), and the first
group is isomorphic to the additive group M, (k).)

Imposing the condition that p; be a homomorphism boils down to saying that
the map

g+ by

should be a cocycle with values in M, (k), where we make II act on M, (k) via
conjugation:

g9-b=p(g)bp(g)~"

The k-vector space M,, (k) with this action of II is usually called the adjoint repre-
sentation of p, and denoted Ad(p). One checks, then, that this association gives an
isomorphism

tp = H' (1, Ad(p)).

This gives a connection between the deformation theory and the cohomology of
Ad(p) which is quite important and which we will continue to examine in the next
section.

Problem 4.6. Check that the map g — b, is a cocycle and that the cocycles corre-
sponding to strictly equivalent lifts differ by a coboundary.

Problem 4.7. Check that the map tp — H!(II, Ad(p)) defined above is indeed an
isomorphism of k-vector spaces.

Notice that when II is a Galois group, this puts us in the realm of Galois
cohomology, which means it puts at our disposal an enormous array of techniques
and theorems. We already have a simple numerical consequence:

Corollary 4.1. Retain the assumptions and notations of this section, so that, in
particular, o universal deformation of p exists and the universal deformation ring
is R. Let dy = dimy HY(I1, Ad(p)). Then R is a quotient of a power series ring in
d; variables over A.

In other words, R fits into an exact sequence
0 — I — A[[X1,Xs,...,Xq,]] m R—0.

One possible approach to understanding R, then, is to try to determine the dimen-
sion d; and the ideal I. In many situations, in fact, the value of d; is the crucial
piece of information.

Tangent spaces and extensions of modules

We have already given several different interpretations of the tangent space to the
deformation functor. One often uses still another one, relating the tangent space to
extensions of IT-modules. We’ll work out the basic correspondence, and leave the
details to the reader.

Let, then

p: I — GL, (k)

be a residual representation, D be the deformation functor, and tp = D(k[e]) be
its tangent space. We want to establish a correspondence between elements of tp
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and extensions of p by p, by which we mean k-vector spaces E with an action of II
such that there is an exact sequence in the category of k[[II]]-modules

0 —V;—E—V;—0,

1

where by V5 we mean® k™ with the action of II given by the residual representation

p-
Suppose, first, that we are given an element of ¢p, that is, a deformation p
of p to k[e]. Let M be k[e]™ with the action of II given by p. Clearly M is of
dimension 2n as a vector space over k. To see that M fits into an exact sequence
as above, consider the submodule e M and the quotient M /eM. These are both
clearly n-dimensional, and in fact they are both isomorphic to V5 as II-modules.

Problem 4.8. Check that both eM and M/eM are free k-modules of dimension n
on which IT acts via p. (If {e1,ez,...,en} is a basis of M over k[e], check that

{ee1,cea,...cen}
is a basis of eM over k and that
{(e1 mod eM), (ez mod €M), ..., (e, mod eM)}

is a basis of M /eM over k. Then check that the action of II is correct.)

Thus, if we identify both eM and M/eM with V5, we have the exact sequence
we wanted. This shows that every element of ¢tp determines an extension. For the
converse, suppose we are given a 2n-dimensional k-vector space E which fits into
an exact sequence

0—1SES 1 —o0.
We then make E into a k[e]-module by defining multiplication by ¢ to be
aoB ES V% E

(this reverse composition makes sense, since the image of 3 is the same as the
domain of ). It’s easy to see that (a o 3)% = 0, since B0 a = 0 by the exactness of
our sequence. In addition, since both a and 8 are homomorphisms of II-modules,
this k[e]-module structure commutes with the action of II. We can now check
directly that this makes E into a free k[e]-module of rank n with an action of II, and
therefore defines a representation II — GL,,(k[e]), which is clearly a deformation
of p.
Problem 4.9. Check the details. (For example, why is E a free k[c]-module? Why is
the representation defined by F a lifting of 5? Do isomorphic E's give strictly equivalent
deformations?)
Problem 4.10. Check that strictly equivalent deformations correspond to isomorphic
extensions and conversely.

There is a standard k-vector space structure on the set of isomorphism classes
of extensions of V5 by V5. This vector space is denoted Exti[[n]] (V5, V5), and what
we have shown so far is that there is a bijection

IThis is somewhat nonstandard notation, but the usual notation, which is to call this space p
(thereby identifying the homomorphism with the II-module it induces), is a bit too confusing to
use here.
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Problem 4.11. (For those who know the vector space structure on Ext.) Show that
this bijection is in fact an isomorphism of k-vector spaces.

Another point of view here is to think in terms of matrices. If E is a 2n-
dimensional k-vector space on which II acts, the existence of an exact sequence
0=V, S3ESV, —o0
amounts to saying that the representation
pE : II — GLa, (k)
corresponding to E can be put into the block form
_ (pPlg) A >
pEe(9) < 0 plg)
with A, € M, (k).

Problem 4.12. Show that the correspondence ¢ — A,p(g) ' is a 1-cocycle and
therefore determines an element of H!(II, Ad(p)). Show that the resulting map

Extymy; (Vz, V) — H'(IT, Ad(p))

1

is an isomorphism.

Thus, we have established canonical isomorphisms
tD = D(k[E]) = I‘I1 (H, Ad(ﬁ)) = EXti[[H]](Vﬁ, Vﬁ)

This gives us one more way to get at the tangent space (and especially its dimen-
sion).

Obstructed and unobstructed deformation problems

The use of the notation d; for the dimension of the tangent space probably signals
that there is a ds about to show up. This is indeed the case. We deepen the
connection between deformation theory and cohomology by using a standard idea in
deformation theory: we try to compute the obstruction to lifting a homomorphism.

Keep the notations and assumptions as above. Suppose we have rings R; and
Ry in Cp, and a surjective coefficient A-algebra homomorphism R; — Ry with
kernel I satisfying I - mg, = 0 (in particular, we could be working with a small
homomorphism). Because of the last assumption, we can (and do) view I as a
k-vector space. Suppose we are given a homomorphism p : [ — GL,,(Ry). What
keeps us from finding a deformation to R;?

Well, we can certainly find a set-theoretic lift, i.e., a function v : IT — GL,,(R1)
that lifts p. To test whether this is a homomorphism, we would have to compute

c(g1,92) = 7(9192)7(g2) " v(g1) ™"

for every g1, go € II. If v were a homomorphism, we would have ¢(g1,g2) = 1.
Since it is a homomorphism modulo I, we do know that
0(91792) =1+ d(glag2)

with d(g1,g2) € M, (I) = Ad(p) ®« I. It now isn’t too hard to check that d(g1, g=)
is a 2-cocycle with values in Ad(p) ®« I, and that replacing v by a different lift
changes this cocycle by a coboundary.

Problem 4.13. Check this!
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Therefore, the cocycle d(gi,g2) gives an element O(pg) in the cohomology
H2(I1, Ad(p) ®« I) = H?(II,Ad(p)) ®« I, and this element is trivial if and only
if there exists a homomorphism IT — GL,,(R;) lifting po. We might call O(pg) the
obstruction class of pg relative to Ry — Ry.

In general, one can’t readily compute obstruction classes. However, the fact
that liftings exist exactly when O(pp) = 0 means that if H*(I, Ad(p)) = 0 the
deformation problem should be especially simple. And this is indeed the case, as
Mazur showed.

Theorem 4.2. Suppose C(p) =k and let R = R(I1, k, p) be the universal deforma-
tion ring representing the deformation functor Da. Let
dy = dim H (T[,Ad(p))  and  do = dim H?*(IT, Ad(p)).
Then we have
(xx) Krull dim(R/maR) > d; — ds.
Furthermore, if dos = 0 we have equality in (xx), and in fact

R = A[[X1, Xo, ..., Xa,]l.

Proof. We already know that there is a surjective homomorphism of coefficient
A-algebras

A[[Tl,T2, - ,le]] — R

which induces an isomorphism on tangent spaces. Reducing modulo the maximal
ideal gives a homomorphism k[[T1, T, ..., T4, ]] — R/maR which still induces an
isomorphism on tangent spaces, and therefore is still surjective. Let J be the kernel
of this surjection. To save on notation, write F' = k[T, T5,...,Ty,]] and let mp be
its maximal ideal. We have an exact sequence

0—J—F—R/mmR—0

in which the surjective homomorphism F — R/msR induces an isomorphism of
tangent spaces. What we need to prove is that the minimal number of generators
for J is at most ds.

Since mgJ C J, the sequence of k-vector spaces

0— J/mFJ — F/mFJ —>fR/mAfR —0

is still exact and the map on the right still induces an isomorphism of tangent spaces.
Hence, the Krull dimension of R/maR is at least dy —dim(J/mpJ). (Equivalently,
the minimal number of generators for .J is at most dim(J/mp.J).)

Let p, be image of the universal deformation p under the quotient map R —
R/mpR. It is clear that p, is universal among deformations of 5 to A-algebras killed
by ma (equivalently, to k-algebras). The construction above gives a cohomology
class

O(p,) € H* (I, Ad(p)) ® J/mpJ

which is the obstruction to lifting p, to F/mgJ.
Consider the k-linear map

Homk(J/mFJ, k) = A2 (H, Ad(ﬁ))
given by
[ 1@ )(0(py)).
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If we can show « is injective, then we will have dimy(J/mpJ) < da, whence we can
conclude that the Krull dimension of R/myR is at least d; — da, as claimed.

To prove the injectivity of «, let f be a nonzero element in the kernel, let A
be the quotient of F'/mpJ by the kernel of f and let I be the image of J/mpJ in
the quotient,so that I = (J/mpJ)/Ker(f) = Im(f) = k. Then we get an exact
sequence

0—I—A—R/myR—0

where I is isomorphic to k and which still induces an isomorphism on tangent
spaces (check!). But now the obstruction to lifting p, to A vanishes. Thus we get
a deformation of p to A lifting p,. But A is a k-algebra and p,, is universal among
lifts to such rings, so this lift must be induced by a homomorphism R/mpR — A.
This means that the sequence splits, but this and the fact that I # 0 contradict
the fact that A — R/my R induces an isomorphism of tangent spaces. Thus, there
cannot be a nonzero element f in the kernel of a, that is, « is injective as claimed.
This proves the inequality.

The last assertion follows at once. If dy = 0, then the kernel of the surjective
homomorphism of coefficient A-algebras

A[[Tl,TQ, . ,le]] — R

has at most 0 generators. Hence, R =2 A[[T},Ts,...,Ty]] in this case; in particular,
equality holds in (#x). g

When we are in the situation where d; = 0, we say the lifting problem is
unobstructed.

In the examples where the deformation ring of an absolutely irreducible p has
been explicitly computed (see the next lecture for how one might do such a thing),
the Krull dimension has always turned out to be equal to d; —d,. Hence, one might
conjecture that one always has the equality.

Conjecture. If p: I — GL, (k) is an absolutely irreducible residual representa-
tion, and R is the universal deformation ring, we have

Krull dim(R/maR) = d; — ds.

We refer to this as the “Dimension Conjecture.” Bockle has shown in [6] that
this conjecture does not hold in some cases where p is reducible but still has a
universal deformation (because it satisfies C(p) = k). He has also been able to
show that it is true in many cases.

Mazur points out in [97] that one should think of this conjecture as a gener-
alization of Leopoldt’s Conjecture. To see why will require computing d; and ds
when II is a global Galois group, and we will do this in the next section.

Galois representations

Let K be a number field, S a finite set of primes in K. We will assume S includes
all the primes above p and also (as we have assumed from the beginning) the primes
at infinity. Let S, C S be the set of primes at infinity. Finally, let IT = Gk s and
let

7:1 — GL, (k)
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be a residual representation such that C'(p) = k, and let R be its universal defor-
mation ring. From our work in the previous section, we know a lower bound for the
dimension of R, expressed in terms of the dimensions of two cohomology groups.
The goal of this section is to compute that bound somewhat more explicitly using
known results about Galois cohomology. It turns out that we will be able to obtain
a better formula for d; — ds, but not for d; and d separately.

The result we need from Galois cohomology is Tate’s global Euler characteristic
formula. Here’s what it says. We take an extension K/Q of degree d, S a finite set
of primes in K including all the infinite primes, M a finite Gk ,s-module such that
S contains all the primes that divide the order of M. (In our application, the order
of M will be a power of p.) For each prime v of K, let K, be the completion at v.
In particular, if v € S, K, is either R or C. Then the global Euler characteristic
formula (see [156], [68], or [107]) says that

#H°(Gk s, M) - #H?(Gg,s,M)
#H' (Gk,s, M) C(#

In our situation M will be Ad(p), which is a k-vector space and hence will have
order a power of p and S will include all primes above p. Since the cohomology
groups in this case will also be k-vector spaces, all of the groups in the formula
have order a power of p, and we can translate the formula into a statement about
dimensions:

i 11 #10Gr 0.

VESoo

dim H*(Gk 5, M) — dimH (G s, M) + dim H*(Gk 5, M) =
= Y dimH(Gk,, M) — ddim M,
VESo
where all of the dimensions are dimensions over k.
Now let M = Ad(p), and write d; = dim H!(G k5, Ad(p)) as before. Then the
formula becomes
do—dy +dy = Y dimH°(Gk,,Ad(p)) — dn”,
VESoo
and hence
dy —dy = do +dn® - ) dimH(Gk,,Ad(p)).
vES
But dy we can compute:
H'(Gk,s,Ad(p)) = (Ad(p)) =
is the set of matrices in My (k) fixed by the conjugation action of Gk g, i.e., it is
C(p) = k. So dp = 1. The upshot, then, is the following.

Proposition 4.3. Let K be a number field of degree d over Q, let p : Gg,s —
GL, (k) be a residual representation such that C(p) =k, and let R be its universal
deformation ring. Then

Krull dim R/myR > 1+dn® — > dimH°(G,,Ad(p)).
VESeo

The advantages of this formula are two. First, it only refers to the 0-th co-
homology groups, which are just the fixed points under the Galois action and so
are relatively easy to compute. Second, the groups acting are the G, for v an
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archimedean prime, so that Gk, has order two if v is real and order one if v is
complex.

Let’s work out what the formula gives in the two most interesting cases. First,
let K be a number field and p be a character (i.e., a one-dimensional representation).
As we saw above, the universal deformation does not depend on 7 in this case; in
fact, we showed that

R = AlG LT
Now notice that
R/mAR = K[[G5 2],
)

so the Krull dimension of this ring is equal to the rank of G}I(b”ép as a Zy-module,
or, equivalently, to the rank of Hom(Gk,s,Z,) as a Z,-module.
On the other hand, the formula above says that the Krull dimension is at least

1 + ro, where r5 is the number of complex primes of K. So we have shown that
rankz, Hom(Gk,s,Zp) > 1+ 12,

which is in fact a well-known result. The assertion that these two numbers are equal
is equivalent to the Leopoldt Conjecture for the field K. This is why we said that
the general dimension conjecture should be viewed as a vastly generalized Leopoldt
Conjecture.

The Leopoldt Conjecture is known to be true for abelian extensions of QQ, and
for abelian extensions of quadratic imaginary fields, so in that case the deformation
ring has the expected dimension. The general case seems very elusive.

Problem 4.14. Check these computations.

Problem 4.15. Look up the classical statement of the Leopoldt Conjecture and ex-
plain why it is equivalent to

rankz, Hom(Gk,s,Zp) = 1+ 3.

The next case in which we want to go through the computation is the case that
is related to modular forms and elliptic curves: n = 2, p an odd prime, K =Q, S
containing p and oco. In this situation there is only one infinite prime, and G, is a
group of order two generated by the complex conjugation o. Since 02 = 1 and p is
odd, p(o) is a matrix of order 2 in GL2(k), and hence we must have

po)~ =y ) o o~ (g 5)

In the first case, det p(0) = 1, and we call p an even representation. In the second,
det p(0) = —1 and we say p is odd.

Now it’s easy to compute the dimension dy of H?(Gs, Ad(p)). If p is even, then
p(o) is a scalar matrix, and hence the action of G on Ad(p) is trivial, so dy = 4.
If p is odd, then an easy computation shows that dyp = 2. Plugging all this into the
formula gives:

Proposition 4.4. Let p be an odd prime, let S be a set of rational primes including
p and 00, let p: Gg,s — GLa(k) be a residual representation satisfying C(p) = k,
and let R be the universal deformation ring of p. Then:

e if p is even, then KrulldimR/mpR > 1, and

e if p is odd, then Krull dim R/mpR > 3.
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One conjectures, at least when p is absolutely irreducible, that both of these
inequalities are in fact equalities, i.e., that the cohomological constraints on the
dimension are the only constraints. This is indeed the case in many cases that have
been computed explicitly.

It is worth noting that the representations coming from elliptic curves and from
modular forms are always odd.

Problem 4.16. What happens if p = 2?7 In this case, the distinction between
det p(0) =1 and det p(o) = —1 vanishes; can the computation still be done?

Problem 4.17. (Hard) Work out di — da when IT = Gg, .



LECTURE 5

Explicit Deformations

So far, we have developed an elaborate theory about the universal deformation,
but (except for the case of GL;) we have not been able to get our hands on one
in any concrete way. In this lecture, we want to discuss a point of view, going
back to the work of Boston in [8], [9], and [10], which allows us, in many cases,
to get a rather explicit description of the universal deformation ring of a Galois
representation. We will try to describe the basic idea, and then give some sample
theorems that have been proved using this method.

The basic setup

The first thing to do is to “see” our residual representation p in terms of field
extensions. Take, as before, S to be a finite set of primes in Q including p and oo,
Qs the maximal extension of Q unramified outside S, IT = Gg,s = G(Qs/Q), and
suppose p : I — GL, (k) is absolutely irreducible or, more generally, assume that
C(p) = k. (This is mostly for convenience; the method also allows us to compute
“versal deformations” in cases where the deformation functor is not representable.)
We want to understand the deformation theory of p.

Let Iy = Ker(p), and let K be the fixed field of
Iy, so that we have a tower of fields Q C K C Qg,
with Galois groups H = G(K/Q) = Im(p) and
G(Qs/K) = IIy. Let Sy be the set of primes of K
which lie above S.

Let p : I — GL,(R) be the universal defor-
mation of p. As above, write I';,(R) for the ker-
nel of the natural projection GLy(R) — GLy, (k). Q
If v € TIy, then p(y) = 1, and therefore p(y) €
[ (R). Thus, the restriction of p to Iy gives a homomorphism Iy — 'y (R). We
note, then, that

Qs

G(Qs/K)=Ilp=Ker(p)

K

G(K/Q)=H=Im(p)

Lemma 5.1. For any ring R in C, T',,(R) is a pro-p-group.

Proof. This appeared as a problem in a previous lecture. The basic idea of the
proof is this: one writes R as the inverse limit of the quotients R/m*, where m is
the maximal ideal in R. Then

I'.(R) = %nI‘n(R/mk).

59
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To prove the lemma, note first that I'y,(R/m) = ', (k) = {1} is a p-group, and then
consider each of the transition homomorphisms

Tn(R/m*) — T, (R/mk=1),
By induction, we know the image is a p-group. The kernel consists of those matrices
whose off-diagonal entries are in the ideal m*~! /m* and whose diagonal entries are
in 14+mb1/mk ie., it is
L+ M, (mF~1/m").
One checks easily that this multiplicative group is isomorphic to the additive group
M,,(m#~1 /m*), which is easily seen to be a p-group. O

Problem 5.1. To complete the proof of the Lemma, check that the additive group
M, (m*~1/m*) is a p-group.

So here’s what we have: the uni-

versal deformation p induces a homo-

G(L/K)=P morphism Iy — T',(R), and T'p(R)

is a pro-p-group. Therefore the ho-

momorphism Iy — T, (R) must fac-

L

G(L/Q)=I K

G(K/Q)=H=2Im(p) tor through some pro-p quotient of Ilj.
Any such quotient will be the Galois
Q group of a pro-p-extension of K, so let

L be the maximal pro-p-extension of K unramified outside S;. Then P = G(L/K)
is a pro-p-group (in fact, it is the maximal continuous pro-p-quotient of Ilp), and
we see that p must factor through IT = G(L/Q). (Boston and Mazur call I the
p-completion of II relative to p.)

We’ve shown, then, that the universal deformation p must factor through the
quotient T of Gg,s. It follows that all the deformations must factor through II.
Hence, the upshot of this discussion is that we can replace II with II when studying
the deformation theory of 5. The crucial feature of II is that it has a big normal
subgroup P which is a pro-p-group, and the quotient fI/P is isomorphic to the
image of p, so that the sequence

1—-P—0O—Imp@ —1

is exact. The basic idea is now the following: to understand deformations of p to
a coefficient A-algebra R, we need to understand all maps from P to I',(R) and
then to consider how they may be extended to all of II in such a way as to be
a deformation of 5. It turns out that we know enough about pro-p-extensions of
number fields that in many cases this program can be pushed through to give a
good description of R and often also of the universal deformation p.

Rather than do this in the most general case, we will focus on the simpler case
of “tame representations.”

Definition 5.1. We say a residual representation 5 is tame if the order of Im(p)
is not divisible by p.

Notice that in the tame case, the sequence
1—-P—IO—Imp@ —1

tells us that IT is a profinite group with a normal pro-p-Sylow subgroup, which
allows us to get at the structure of II in a pretty explicit way.
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Group theory

In this section, we summarize some group-theoretical results that will help us un-
derstand the universal deformation of a tame representation. The relevance of these
results was first pointed out by Boston, whose exposition in [9] we follow.

As we saw above, when the residual representation 7 is tame, any deformation
factors through a profinite group IT which has a normal pro-p-Sylow subgroup P
such that

I /P = Im(p).
In this situation, we can apply the following theorem:

Theorem 5.2 (Schur-Zassenhaus). Let G be a profinite group with normal pro-p-
Sylow subgroup P of finite index in G. Let 1 : G — G/ P be the projection on
the quotient. Then G contains a subgroup A such that w induces an isomorphism
AS G/P. Furthermore, any two subgroups with this property are conjugate by an
element of P.

(See [120, p. 246].)

As a consequence, G is the semi-direct product of P and A. We will exploit this
later to define a homomorphism on G by defining it on A and on P in a compatible
way.

Problem 5.2. Suppose G is as above, G' is a topological group, and we are given
continuous homomorphisms & : A — G’ and 8 : P — G'. Under what conditions
do « and 3 together define a homomorphism G — G'?

The group P is a pro-p-group. If P is topologically finitely generated, it is a
quotient of a free pro-p-group on finitely many generators. The minimal number
of generators for P is called the generator rank of P and sometimes denoted d(P).
The kernel of the map from the free pro-p-group on d(P) generators to P is itself
finitely generated; the minimal number of generators for the kernel is called the
relation rank of P, and sometimes denoted r(P).

The Burnside Basis Theorem (Problem 2.2) provides a way to compute the
generator rank. To make the notation simpler, let P = Fr(P) be the Frattini
quotient of P, i.e., the maximal p-elementary abelian (continuous) quotient of P.
The Burnside Basis Theorem says that if z1,xo, ..., x4 are elements of P such that
their image in P generates P, then 1,25, ...,z topologically generate P.

The following strengthening of the theorem is due to Boston (see [9]).

Theorem 5.3. Let G be a profinite group with normal pro-p-Sylow subgroup P of
finite index in G, and let A be a subgroup of G mapping isomorphically to G/P.
Let A act on P and on P by conjugation. If V is an B,[A]-submodule of P, then
there exists an A-invariant subgroup V' of P with dimg, V generators which maps
onto V under .

For example, consider the case when V is one-dimensional. Then the assump-
tion is that we have € P such that a~'Za = Z%(® for some character ¢ : A —» .
In this case, the theorem says that T can be lifted to an element x € P such that
a'za = 2% where ¢ : A — Z, is a character lifting ¢. (Since A is finite, this
must be a character of finite order, and hence must be the Teichmdiller lift of ¢.)

One final bit of general group representation theory: suppose H C GL, (k) is
a subgroup whose order is prime to p, and let M be the adjoint representation of
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H, that is M = M, (k) with H acting by conjugation. Suppose V is some other
finite-dimensional k-vector space with an action of H; as usual, we can think of M
and V' as modules over the group ring k[H]. Since the order of H is not divisible
by p, Maschke’s Theorem says that every k[H]-module can be written as a direct
sum of irreducible k[ H]-modules.

Definition 5.2. We will say V is prime to adjoint if V and M have no irreducible
sub-representations in common.

The “prime-to-adjoint” condition plays a big role in understanding certain de-
formation problems. See [97, section 1.12], [9, section 2], [42, section 3.6], and [7]
for instances where this condition plays a significant role.

Problem 5.3. Show that the subspace of M consisting of matrices whose trace is
zero is an H-invariant subspace. What is the complementary subspace? (You may
want to assume the p does not divide n.)

Problem 5.4. Let R be a coefficient ring, and let
K, =Ker(l',(R) — T',,(R/m")).

Suppose H is a finite subgroup of GL,, (k) of order prime to p. Show that K, /K,
has a natural k[H]-module structure, and that it is isomorphic to a multiple of the
adjoint representation of H (that is, a direct sum of several copies of the adjoint
representation).

Problem 5.5. Let R be a coefficient ring, let X be a topologically finitely generated
closed subgroup of I',,(R), and let H be a finite subgroup of GL,,(R) whose order is not
divisible by p and which normalizes X. Suppose that the Frattini quotient X, viewed
as a k[H]-module, is prime-to-adjoint. Show that X must be trivial. (Hint: Using the
notation of the previous problem, let » be minimal such that X is not contained in K,
and consider the image of X in K,_;/K,.)

The last two problems are taken from [9, section 2]. The last one is particularly
significant: it highlights the importance of the adjoint representation and explains
why the prime-to-adjoint condition is so significant.

Pro-p-extensions

In the picture above, we have a number field K, a set of primes S; including all
primes above p and all archimedean primes, and an extension L/K which is the
maximal pro-p-extension of K unramified outside S;. Our goal in this section is to
collect some of the known facts about the Galois group P = G(L/K). We again
follow Boston’s exposition in [9].

The main result we want to quote gives the generator and relation ranks of
P in terms of the arithmetic of K. (For a first hint about why this is possible,
notice that the Burnside Basis Theorem allows one to reduce the question about
the generator rank to class field theory, since P is abelian.)

Let ro denote the number of complex primes of K. As usual, if v is a (finite or
infinite) prime of K, we write K, for the completion of K at v. For any field F, let
0(F) = 1if F contains any primitive p-th roots of unity, and 6(F) = 0 otherwise.
Let H = G(K/Q) = Im(p).

Let Zs be the set of nonzero elements 2 € K such that the fractional ideal ()
generated by z is the p-th power of some ideal and such that z is a p-th power in
each completion K, for v € S;. Of course, if z is already a p-th power in K, then
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x € Zgs. Notice that both (K*)? and Zg are stable under the Galois action of H.
Let Bg denote the F,[H]-module Zg /(K *)P.
We can now (finally) state the theorem about P.

Theorem 5.4. Let d(P) and r(P) denote, as above, the generator and relation
ranks of P. Then

r(P) = (Z 6(KU)> — §(K) + dimg, B,

vES,

and

d(P) =ry +1+r(P).
In particular, P is topologically finitely generated.

For what follows, we will need to know something about P as an H-module.
To set up the theorem, let E denote the units of K modulo p-th powers, and
let E, denote the units of K, modulo p-th powers. If the class number of K is
prime to p, then we can deduce from global class field theory an exact sequence of
E,[H]-modules

0— Bg — E — @EU—)F—)O.
vES]

For each rational prime /, let H; be a decomposition subgroup of H at ¢, and
let Hy be the subgroup of H generated by a complex conjugation. Let u,(K) be
the group of p-th roots of unity in K, which we think of as a module over H and
over the Hy. Note that it’s perfectly possible for u,(K) to be trivial.

Theorem 5.5 (Boston-Mazur). Under the hypotheses above, if H has order prime
to p, then we have the following isomorphisms of F,[H]-modules:

D E. =F[H] (6]9 Indﬁw)

vES] les
E®F, =y, Indj_F,

See [10] for the proof. The point is this: using this theorem and the exact
sequence above, we can determine the decomposition of P into irreducible subrep-
resentations of H. Later, we’ll want to look for homomorphisms from P to I';,(R),
where R is a coefficient ring. We will often be able to reduce this to looking for
H-homomorphisms from P to appropriate quotients of submodules of I',,(R). By
the results in the previous section, the latter only involve irreducible subrepresen-
tations contained in the adjoint representation of H. So the subrepresentations of
P which are not contained in the adjoint representation will have to have trivial
image.

Tame representations

Keep notations as above, and assume now that p is tame, that is, that the order of
H =TIm(p) is not divisible by p. Recall that in this case P is a normal pro-p-Sylow
subgroup of II. By the Schur-Zassenhaus theorem, II is the semidirect product of
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P and a subgroup A =2 G/P = H. Because I', (W (k)) is pro-p, we can use Schur-
Zassenhaus again to find a subgroup H; of GL, (W (k)) which is isomorphic to H
and therefore we can find a lift

pr : I — GL, (W (k))

inducing an isomorphism from A to H;. We get, then, an induced inclusion o :
A — GL,(W(k)), which we will fix from now on.

Problem 5.6. Show that the lift p; is unique up to strict equivalence, and conclude
that any two choices of the inclusion o are conjugate by an element of I';, (W (k)).

For any coefficient ring R we have a canonical homomorphism W (k) — R and
hence a homomorphism og : A — GL,(R). We let A act on I';,(R) by conjugation
via this homomorphism.

Given all this setup, recall that any deformation of p induces a homomorphism
from P = Kerp to I',,(R). We can make this into a precise correspondence by
taking into account the A-actions on both sides.

Define a set-valued covariant functor E; on € by defining, for each coefficient
ring R,

E7(R) = Hom (P, 'y (R)),

where Hom 4 denotes the set of continuous homomorphisms from P to I';,(R) which
commute with the A action. We want to compare this functor to the deformation
functor Dy.

Notice that since II is the semidirect product of P and A (and we have been
careful to take the A-action into account), any element ¢ € E5(R), together with the
inclusion og, defines a deformation of p to R. Hence, there is a natural morphism
of functors E; — Dy.

Theorem 5.6 (Boston). The functor Ez is always representable. Furthermore,

i. If C(p) =k, the natural morphism of functors E; — Dy is an isomorphism.
it. Otherwise, the morphism is smooth and induces an isomorphism on tangent
spaces.

Proof. Let’s first prove that we have an isomorphism when C(p) = k. To lighten
the notation, write E = E; and D = D5. Given a coefficient ring R, we claim that
the induced map E(R) — D(R) is a bijection.

To see that it is surjective, suppose p is a deformation of p to R. Then p induces
a lift A — GL,(R). Since all such lifts are conjugate by elements of I',(R) (see
the problem above), we can choose a homomorphism ¢ in the strict equivalence
class of p such that |4 = or. Then ¢|p is an element of E(R) which maps to the
strict equivalence class of 4, that is, to p.

To see that the map is injective, suppose ¢, and ¢» produce strictly equivalent
lifts ¢; and 19 of p. Since both ; and 12 induce o on A, the matrix realizing the
strict equivalence must be an element of I';,(R) acting trivially on A by conjugation,
i.e., commuting with the image of A. However, under our assumption that C(p) = k,
the only elements of I',,(R) commuting with the image of A are the scalars. Hence
i1 and 1o differ by conjugation by a scalar, i.e., don’t differ at all. In particular,
their restrictions to P are the same, and hence ¢; = ¢s.

We leave the case when C(p) # k to the reader, and proceed to prove that E
is representable. Choose generators z1,zs,...,z4 of P. The image of z, in T',,(R)
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is a matrix

1+ mﬁ) mgg) e mgz)
mgq) 1+ mgg) e mg’;) :
mgfl) mgg R mm

where the mg’-") are in the maximal ideal of R.

We will construct the ring representing E as a quotient of the power series
ring W(k)[[Tl(ll),...,Téi)]] in dn? variables. Let F be the free pro-p-group on
Z1,T2,...,%q, SO that we get an exact sequence of groups

1—N—F—P—1.

A homomorphism from P to I',,(R) is exactly the same as a homomorphism from
JF to T',(R) such that N is in the kernel. We begin by defining a homomorphism
from the free pro-p-group JF to I‘n(W(k)[[Tijr)]]) such that that the image of z, is
the matrix

1+ oy T
¢SS T o SO
T O L 1+T

Requiring that N be in the kernel amounts to requiring that certain equations
involving the Ti(;) hold. Requiring that the A-actions commute with the homomor-

phism imposes further equations. Let I be the ideal of W(k)[[Ti(jT)]] generated by all

these equations. If we let R = W(k)[[Ti(jT)]] /I, we have produced a homomorphism
¢ : P — T, (R). It is clear that this is the universal such homomorphism, and
hence that R represents the functor E. O

Problem 5.7. Check the remaining assertions in the theorem.

It’s worth noting that this proof sheds some light on the issue of what it means
for the functor D is representable, at least in the case when p is tame. As usual, the
question of representability turns out to be connected to whether there are “extra
automorphisms.” In our situation, the question turns out to be whether the lift
A — GL,(R) is unique.

This result has been generalized by Bockle; see [5], for example.

Since the two functors E and D are isomorphic, so are their tangent spaces.
Hence

dimy tp = dimy Hom4 (P, T, (k[€]))-

Note, now that I'j,(k[¢]) is isomorphic to Ad(p) as an A-module; in particular, it
is a p-elementary abelian group, so every homomorphism from P to I',,(k[e]) must
factor through P. Hence

dimy tp = dimyg Hom 4 (ﬁ, Ad(ﬁ))

Now, since the order of A is not divisible by p, both P and Ad(p) can be decomposed
as a sum or irreducible A-modules. The dimension on the right, then, can be
computed in terms of the number of irreducible A-modules which appear in the
decomposition of both P and Ad(p). We are back to the situation described above:
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if we can determine which sub-representations occur in P, we can compute the
dimension of the tangent space.

Suppose C(p) = k and let R be the universal deformation ring. Note that if
we can compute the dimension d of the tangent space, we know that there is a
surjective homomorphism of coefficient rings

W(k)[[Tla v 7Td]] — R

inducing the identity on tangent spaces. Thus, when 7 is tame we can read the
dimension off from the structure of P as an F,[H]-module. This crucial idea, to-
gether with the fact that what matters are the sub-representations which occur in
the adjoint representation, has been dubbed the “prime-to-adjoint” principle by
Bockle.

Here’s a sample theorem:

Theorem 5.7 (Boston). Letp be an odd prime. Suppose thatp : Gg,.s — GLo(E,)
is odd and absolutely irreducible. Let H = Im(p), and suppose that p does not divide
the order of H, so that p is tame. Let K be the field fixed by the kernel of p, and
let S1 be the set of primes of K which lie above the primes in S. Let

V = coker (,up(K) — @ Hp(Kv)> )

vESL

and let B = Bg defined as above. Both V and B are F,[H]|-modules. Suppose that
the class number of K is not divisible by p and that both V and B are relatively
prime to Ad(p) as E,[H]-modules. Then

R(p) = Zy|[T1, T>, T5]),

and one can give an explicit description of p on (well-chosen) generators for o=
G(L/Q).
Proof. (Just a sketch.) From Theorem 5.5, one can see that P is generated by

i- an element T which is fixed under H,
#. an element 7 such that ¢ = (7) !, where c is a chosen complex conjugation
in G,
iii. other elements which generate a prime-to-adjoint [, [H]-module.
Using theorem 5.3, we see that P is generated by z (fixed under H), y such
that y° = y !, and other generators which are prime-to-adjoint. From this we see
that the dimension of the tangent space is three and we can define a deformation

to Zp[[Tl,TQ,T3]] by
N 14+ Ty 0
0 1+T

N (14 TpT3)'/? Ty
Ty (1 + Ty T3)'/?

and mapping all the other generators (which are prime-to-adjoint) to the identity.

This gives the universal deformation. O

While this result covers a case where the deformation problem is unobstructed,
Boston’s work also includes various results for obstructed cases. See, for example,

[9]-
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Flach, Boston, and Ullom have similar results for deformations of residual rep-
resentations p which come from the p-division points of an elliptic curve. For
example, the following is a result of Flach. Suppose E is an elliptic curve over Q
p > 5, and assume that E has good reduction at p. Take

S = {primes of bad reduction} U {p, oo},
let E[p] be the points of order p on E, and let
p=7pg: Gos — GL2(E,)
be the representation given by the action of Gg g on E[p].

Theorem 5.8 (Flach). Suppose that
i. p:Go,s — GLx(I,) is surjective,
i. for allT € S, H°(Q,, E[p] ® E[p]) =0,
iti. p does not divide Q"1 L(M,2), where M = Sym?(E) and Q is a transcendental
period.

Then :R(ﬁ) = Zp[[Tl, TQ, T3]]

The point is to show that the deformation problem is unobstructed by exploiting
the fact that Sym?(E) is closely related to Ad(p). See Appendix 2 for an expository
account of the details and [50] for the original publication.

Boston and Ullom have obtained results of this type for the case of an elliptic
curve with complex multiplication in [11]. Their result also covers some cases where
the deformation problem is obstructed.

The most far-reaching results based on this method have been obtained by
Bockle. For example, in [6], he shows under mild extra hypotheses that if p is tame
and absolutely irreducible then the rigid space Spf R(p)"# has the expected Krull
dimension. In [5] he proves a generalization of a result of Mazur (which we will
mention in a later lecture) that implies, in many cases (and without a tameness
assumption), that R(p) has the predicted dimension. Finally (for example, in [7]),
he has also studied carefully the case in which 7 is Borel (therefore reducible) but
still satisfies C'(p) = k.






LECTURE 6
Deformations With Prescribed Properties

Suppose we have a residual representation p which satisfies C'(p) = k. Then we
have a universal deformation ring. As we pointed out before, we can think of this
ring as defining a universal deformation space whose points correspond to actual
deformations of p. For example, in the previous lecture we saw cases where the
universal deformation ring is W (k)[[T1,T», T5]]; the corresponding space is three-
dimensional (over W (k)), and the T; can be thought of as giving “coordinates” for
our space: for each triple (mq,my,m3) in the maximal ideal of some W (k)-algebra,
we get a representation by mapping 7; to m;. We would like to understand what
these “coordinates” mean in terms of the representations themselves. One strategy
for doing this is to consider interesting subspaces (equivalently, quotient rings of the
universal deformation ring). The natural way to do this is to consider subspaces of
the universal deformation space that correspond to deformations that have certain
interesting or desirable properties. This idea was first considered in Mazur’s original
paper [97], where he discusses ordinary deformations and also looks at several other
possible conditions.

Even more important is the observation that in many circumstances we do not
want to consider all deformations, but rather only those satisfying certain condi-
tions. The best known example of this is when we try to prove modularity of certain
deformations. In that situation, it is natural to require our deformations to have
those properties that we know modular representations will have. We will discuss
modular representations more carefully in the next lecture.

The basic idea for today, then, is this: suppose that the residual representation
has a certain property. Then one can ask which deformations retain that property.
For well-chosen properties, this allows us to define a representable sub-functor of
the general deformation functor, and therefore to obtain a “universal deformation
with the given property”, which will correspond to a quotient of the universal
deformation ring (or, from the geometric point of view, will define a subspace of
the full deformation space.)

Deformation Conditions

Let’s begin with a general account of “deformation conditions,” that is, conditions
that give rise to “good” subfunctors of the deformation functor. We follow the
discussion in [101].

69
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What do we expect of a “deformation condition?” Well, the first thing we need
is that the association

R ~~ {deformations of p satisfying our condition}

be a subfunctor of D5, so that we have a deformation problem to work with. In
addition, we would like this functor to be “relatively representable,” that is, we
would like our subfunctor to be sufficiently well behaved so that it is representable
whenever D is.

Recall that we can interpret a representation

p: I — GL,(A)

by saying that it gives us a free A-module of rank n with a continuous A-linear
action of the profinite group II. In practice, all of the deformation conditions
that have been useful have amounted to specifying properties that this II-module
should have. For technical reasons, it makes sense to specify these properties for
representations where A is an artinian coefficient A-algebra.

Before we state the definition, let’s introduce some terminology. Let A and A,
be artinian coefficient A-algebras. If we are given a representation p : II — GL,,(4)
and a homomorphism of artinian coefficient A-algebras a : A — A;, then we get
a representation p; : I — GL,(A;) by composing p with the homomorphism
GL,(A) — GL,(4,) induced by a. We will call p; the push-forward of p by «,
and sometimes denote it by a.p. Of course, this works just as well for deformations
of a residual representation p; in fact, the push-forward operation is what makes
D a functor (we could have denoted the push-forward map by D;(«) instead of
Q).

It’s perhaps worth remarking that if we interpret a representation to GL,,(A) as
giving a II-module structure to the free A-module of rank n, then the push-forward
operation is just the tensor product: if M is the free A module of rank n with
a continuous linear II-action, then the push-forward is M ® 4 A;, where the map
a: A — Ay gives the A-module structure on A;.

Now we are ready to define a (good) deformation condition. Informally, we want
this to be a condition on deformations that is satisfied by the residual representation
p (otherwise there’s no point) and that is functorial (that is, preserved by push-
forwards). Finally, we want the resulting functor to be relatively representable,
so we require that our condition behave well with respect to fiber products and
subrings.

Definition 6.1. Let p be a residual representation of dimension n. A deformation
condition on deformations of p is a property Q of n-dimensional representations of
IT defined over artinian coefficient A-algebras (equivalently, of A-modules which are
free of rank n over A and have a continuous II-action) which satisfies the following
conditions.

i- The residual representation p has property Q.

ii. Given a deformation p : I — GL,(A) of p and a homomorphism of co-
efficient A-algebras a : A — Ay, if p has property Q then so does the
push-forward a.,p.
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111. Let
A Xc B
y x
A B
N
C

be a fiber product diagram in €}, and let
p: 11— GL,(A x¢ B)

be a deformation of p. Then p has property Q if and only if both p.p and g.p
have property Q.

. Let a: A — A; be an injective homomorphism of coefficient A-algebras and
let p : IT — GL,(A) be a deformation of p. If a.p has property Q then so
does p.

It’s probably worthwhile to comment a bit on the role of these four conditions.
The first is clearly necessary for our subfunctor not to be trivial (and to make sure
its value on k is a singleton). The second makes sure that we are going to get a
functor. The third is clearly related to the Schlessinger criteria, and its role will be
to make sure that the subfunctor is relatively representable. As Mark Dickinson
explained to me, the fourth in fact follows from (ii) and (iii)—see the complements
to this lecture for a proof.

Given a deformation condition, we can define a subfunctor of the deformation
functor Dy:

Definition 6.2. Let Q be a deformation condition for p. We define a functor
Do : G?\ ~ Sets
by setting, for each artinian coefficient A-algebra A,
Dq(A) = {deformations of 5 to A which have property Q}.

We can then extend Dg to all of €y by continuity: if R is a coefficient A-algebra,
Do(R) = lim Do(R/m").
k

In other words, we are saying that a deformation of 5 to a coefficient A-algebra
R has property Q if and only if its reductions modulo m* have property Q for all
k> 1

Problem 6.1. Check that Dg is a subfunctor of D5. (The main thing to check
is that it does the right thing when we have a homomorphism of artinian coefficient
A-algebras.)

Theorem 6.1. If Q is a deformation condition for p, then Dq satisfies conditions
H1, H2, and H3 in Schlessinger’s theorem. If C(p) = k, then Dq also satisfies
property H4, and therefore is representable by a ring Rq which is a quotient of the
universal deformation ring R(p).

Proof. Thisis pretty much immediate from conditions (ii) and (iii) in the definition
of a deformation problem. O

Problem 6.2. Check the details!
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Suppose we have a deformation condition Q. Then we can consider the tangent
spaces of both Dg and Dy:

Do (Kfe]) € Dy(kl).
Recall that we have a cohomological interpretation of the larger space:
Dj(k[e]) = H'(IL, Ad(p)).-

Definition 6.3. We define H{ (I, Ad(p)) to be the subspace of H(II, Ad(p)) cor-
responding, under this isomorphism, to the subspace Dg(k[e]).

It’s important to emphasize that this definition, as Mazur says, is really only a
“promissory note.” What it does is hint at the fact that for most of the interesting
deformation conditions Q it will be possible to describe this cohomology group in
an intrinsic way.

Problem 6.3. Use a similar dodge to define the Ext group Extiun]]’g(vg, V5). Can
you describe this intrinsically in terms of extensions of II-modules?

We go on to consider several different possible choices for the deformation
condition Q.

Deformations with fixed determinant

Probably the most natural restriction we can put on deformations is to fix their
determinant. To see why this is something we might want to do, remember that
representations attached to elliptic curves have determinant equal to the cyclotomic
character, and that representations attached to modular forms have determinant
equal to a character of finite order times a power (related to the weight of the
modular form) of the cyclotomic character. Thus, for example, when we are trying
to show that an elliptic curve is modular by studying its Galois representation it
usually suffices to look only at the deformations that have determinant equal to the
cyclotomic character.

In order for it to make sense to say that “all deformations have determinant
0,” we need to take § to be a character with values in A*, which we can then view
as taking values in any coefficient A-algebra via the structural map.

Definition 6.4. Let ¢ be a continuous homomorphism
§:11 — A,
and for every coefficient A-algebra R let dg be the composition
op:II O AX — R,
We say a deformation p of p to R has determinant 6 if det p = dg.

Notice that this abuses the language somewhat, since after all the determinant
of a deformation “with determinant ¢” is actually not ¢! In practice, this does not
lead to any trouble, so we won’t worry too much about it.

Now suppose p itself has determinant §. Let “det = §” be shorthand for the
property of having determinant §.

Lemma 6.2. Suppose p has determinant 6. Then “det = §” is a deformation
condition.

Problem 6.4. Prove the lemma. (This is quite straightforward.)
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Suppose, now, that C(p) = k. Then the lemma implies that there exists a
quotient Rget—gs of the universal deformation ring R corresponding to those defor-
mations whose determinant is §. It’s tangent space is not too hard to pin down:
let Ad°(p) denote the subspace of Ad(p) consisting of those matrices whose trace
is zero. It’s clear that Ad°(p) is stable under the conjugation action of II. Then we
have

Lemma 6.3. If ptn, the tangent space of the functor Dyet=5 is given cohomolog-
ically by

Dyei—s(k[e]) = H' (1, Ad° (p)) ¢ H (T, Ad(p)).

(

If p|n, then H' (1, Ad°(p)) is in general no longer a subset of H' (I, Ad(p)), but the
inclusion Ad®(p) — Ad(p) still induces a map from one to the other; in this case
Digeizs(Kle]) = Tm (H! (I, Ad°(5)) —> H' (IL, Ad(5)) .

Proof. The proof is the same in both cases. Essentially, we just repeat the argu-
ment, given in lecture 4, connecting lifts to k[e] with elements in the cohomology,

and then note that the diagram

1 + eM,, (k) — M, (k)

ldet L“

1+ek———k

is commutative, where the horizontal maps are the isomorphism 1 + b +— b. The
requirement of fixed determinant forces the 1 + M, (k) part of the lift to have
determinant 1, which translates to trace 0 when we go to My (k). Thus, we get
elements in H! (I, Ad(5)) which are represented by cocycles taking values in Ad° (),
and hence belong to the image of H' (I, Ad° (7)) in H' (I, Ad()). When p { n, this
image is just H'(TT, Ad°(p)) itself. O

Problem 6.5. Suppose p satisfies C'(p) = k and has determinant §. Let R be the
universal deformation ring of p, let p be the universal deformation, and let Rget—s be
the universal “deformation with determinant §” ring. Let dx be

St T2 AX 5 RX,

the composition of § with the structure homomorphism of R as a A-algebra. Show that
Raet=s is the quotient of R by the closed ideal generated by the elements

dx(g) — det p(g),

where g runs through a set of topological generators of II.

Problem 6.6. (From [6].) Assume p does not divide n. Suppose p satisfies C(p) = k
and has determinant §. Consider the three universal objects

i. R is the universal deformation ring and p the universal deformation,
ii. Rget—s is the universal ring for deformations of determinant § and p; is the
universal deformation of determinant §,
iii. A[[T']] is the universal deformation ring of the trivial character and € is the uni-
versal deformation.
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Show that
R = Raet—s @A A[[T]]
and that

p=p;se.

The result in this last problem is used by Bockle in [6] to reduce the dimension
conjecture for R to a question about the dimension of Rget—s. In general, it is
not too hard to go back and forth between deformations in general (perhaps even
subject to other deformation conditions) and deformations (of the same type) with
fixed determinant.

Categorical deformation conditions

One interesting class of deformation conditions was introduced by Ramakrishna in
[115]. The idea is to require that our deformations (at least at the artinian level)
define II-modules that belong to a particularly nice subcategory of the category of
A-modules of finite length with a continuous A-linear action of II.

To set this up, let P be a full subcategory of the category of A-modules of
finite length with a continuous A-linear action of II, and assume P is closed under
passage to sub-objects, quotients, and finite direct sums. Given p, we say that a
deformation p : II — GL,(R) is of type P if the [I-modules defined by all of its
quotients py : 1T — GL,(R/m*), viewed as A-modules with a continuous linear
action of II, are in the category P.

Theorem 6.4 (Ramakrishna). Suppose p is of type P. The condition of “being of
type P” is a deformation condition.

Proof. We need to prove that the property of “being of type P” is preserved by
push-forwards and that it works well with fiber products. Suppose first that A
and A; are artinian coefficient rings, that we have a coefficient ring homomorphism
a: A — Ay, and that p is a deformation of p to A which has property P. Let
M = A" and let M; = AP, both of which are endowed with continuous linear
actions of II via p (and its push-forward to 4;). We think of both M and M; as
A-modules of finite length, and we know that M is in the subcategory P.

Since both A and A; are of finite length, there exists an artinian coefficient
ring B such that

e a: A — A, factors through B, that is, there exist coefficient ring homo-
morphisms a7 : A — B and as : B — A; such that a = as o aq,

e B is free of finite rank as an A-module, and

e ay: B — A is surjective.
(For example, we can take B to be a quotient of a power series ring over A by a
power of its maximal ideal.) Now the pushforward of M via ay is simply a direct
sum M" of copies of M, and therefore is an object of P, and M;, which is the
pushforward of M" under as, is a quotient of M". Since P is closed under finite
direct sums and under quotients, it follows that M is an object of P. This proves
condition (ii) in the definition of a deformation condition.

Property (iii) is easier. Suppose we have homomorphisms of artinian coefficient
rings A — C' and B — C. Let R = A X¢ B, and suppose we have a deformation
p of pto R. We already know that if p has property P then so do the push-forwards
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to A and B. For the converse, let p4 and pp be the push-forwards, and suppose
both have property P. Notice that R is a subring of A & B, and therefore R™ is a
submodule of A™ & B™. Since we know both A™ and B™ are in P and P is closed
under direct sums and sub-objects, it follows that R™ is in P, and we are done. [

The most important example of a property of this type is the one Ramakrishna
considered in his original paper and which was later used by Wiles. Suppose II =
G, is the absolute Galois group of @, and we let P = P5 be the category of all
G, representations p (over artinian rings A) such that the deformation space of p is
isomorphic to the Gg,-module obtained from the generic fiber of a finite flat group
scheme over Spec(Zg). The category Py is closed under passage to sub-objects,
quotients, and direct sums, and therefore defines a deformation condition. We call
deformations satisfying this condition “flat deformations.”

One can also define the analogous condition for representations of G, s if £ €
S. In this case we have a homomorphism Gg, — Gq,s; we say a deformation
p: Gos — GL,(A) is “flat at €7 if its composition with this homomorphism
defines a representation of Gig, which is of type Pg.

Problem 6.7. Work out a usable description of the tangent space of the functor Dy
of flat deformations of representations of Gg,. (Hint: what we would like to have is
an identification of the tangent space with an Ext' group in the category of finite flat
group schemes. To make this work, you will need to use Raynaud’s result in [116] on
uniqueness of models; this requires e < p— 1, and hence you'll want to assume p > 2.)

Ordinary deformations

We now restrict ourselves to the case n = 2 to talk about the condition of being
“ordinary.” This actually appears with two different meanings in the literature.
We follow Mazur’s definition (which I think is a minority opinion); to other authors
what we are defining here are “co-ordinary” deformations, i.e., deformations whose
dual is ordinary. In many situations, this makes no difference (e.g., because the
universal deformation rings of p and of its contragredient are canonically isomor-
phic).

Ordinary deformations were first considered by Mazur in connection with Hida’s
theory of ordinary p-adic modular forms. Let O be a discrete valuation ring which
is finite over Z,, and suppose we have a Hecke eigenform f of weight k& and level
N and defined over O such that U,(f) = Af with A € O a p-adic unit. Then the
attached Galois representation

pPr: GQ,S — GLQ(O)
has the following property. If we set
M=0x0

endowed with the Gg,s-action defined by py, and if I, is an inertia subgroup at p,
then the submodule M of vectors fixed under I, is O-free of rank one, and is a
direct summand.*

LCaveat: for this to be true, one must define the representation attached to a modular form f in
terms of the geometric Frobenius transformation, which induces z +— 2?~" on the residue field. As
a result, our “representation attached to a modular form f” is the contragredient of the usual one
constructed in étale cohomology. With the arithmetic Frobenius, one has an invariant quotient
instead of an invariant subspace.
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One can show, in fact, that all of the deformations which Hida’s theory gives
us have this property. Thus, it makes sense to try to work out which piece of the
full deformation space is cut out by this condition.

Definition 6.5. Fix IT and k as above, let R be a ring in €, and choose a closed
subgroup I C II. Let

p: I — GL2(R)

be a representation, and let M = R x R with the II-module structure determined
by p. We say p is I-ordinary if the sub-R-module M’ C M is free of rank 1 over R
and a direct summand of M.

Notice that by this definition a representation satisfying MT = M (we might
call it I-unramified) does not qualify as being I-ordinary.
Problem 6.8. Suppose p is I-ordinary and that p is a representation lifting p. Check
that if p is strictly equivalent to o and p is ordinary, then ¢ is ordinary. In other words,
the property of being ordinary is invariant under strict equivalence.

Theorem 6.5. Suppose p is I-ordinary. Then the condition of being I-ordinary is
a deformation condition for p.

Proof. This is pretty much straightforward. The first condition we need to check
is that if a deformation p : II — GL3(A) is I-ordinary and = : A — A’ is a
homomorphism of coefficient A-algebras, then the deformation m.p : II — GLo(A')
obtained from 7 is also ordinary. Changing basis if necessary, we can assume that
the image of any x € I under p is of the form

w0 =(p 7).

But then it’s clear that the image of this matrix under 7 is a matrix of the same
form, which shows that m,p is I-ordinary.
The second condition asks us to look at a fiber product situation, So suppose
we have rings Ry, R, and Rs in Cy, and morphisms
¢1 :R1 —)R() and ¢2 :RQ —)R().
Let
R3 = R1 X Ro RQ.

We need to show that if we have a deformation to R3 such that the induced de-
formations to R; and R» are both I-ordinary, then so is R3. The basic strategy is
similar to what we have done before: we must find homomorphisms in the strict
equivalence classes of the deformations to R; and Rs such that the rank-one sub-
spaces fixed by I map to the same subspace of Ry X Rp, and so on. We leave the
details to the reader. O

Problem 6.9. Finish the proof of the theorem.
Given an [-ordinary residual representation
,5 I — GLQ(k),

it now makes sense to consider the subfunctor Dy of D such that, for any ring R
in GA,

D;(R) = {I-ordinary deformations of p to R}.
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Since being I-ordinary is a deformation condition, this functor is representable
whenever D is.

Corollary 6.6. Suppose p is I-ordinary and that C(p) = k. Then there exists
a universal I-ordinary deformation of p. Specifically, there exists a ring Ry =
Ri(IL, k,p,I) and an I-ordinary deformation

pr: I — GLy(Ry)

such that any I-ordinary deformation of p to a ring A is Ca is obtained from p;
via a unique homomorphism Ry — A.

It is easy to see that one can extend this result to show that if we consider a
set of closed subgroups Iy, I, ..., I, and the residual representation p is ordinary
for each of these subgroups, then there exists a universal deformation of that type.

Problem 6.10. A representation p : II — GL2(A) is called I-co-ordinary if its
representation space M has a submodule M7 which is free of rank 1 as an A-module,
and is a direct summand of M, and such that M /M, is invariant under I. Show that
being I-co-ordinary is a deformation condition.

As discussed above, the tangent space to the I-ordinary deformation subfunctor
corresponds to a subspace

H} (I, Ad(p)) c H(TI, Ad).

Problem 6.11. Let V5 be the representation space for 5, and let V! be the subspace
fixed by inertia. Assume p is ordinary, so that V7 is one-dimensional. Let Ad(p) denote
the subspace of Ad(p) consisting of those matrices which correspond to endomorphisms
of V which factor through V/V{. Show that

H} (IT, Ad(7)) = H' (IL, Ad; (7)) € H'(IT, Ad).

Deformation conditions for global Galois representations

Now let’s go back to the situation of most interest for us, when Il = Gg s is the
Galois group of the maximal extension of (Q unramified outside a finite set of primes
S. As always, we will assume that S contains both p and the prime at infinity. The
first thing to consider is why one would want to impose deformation conditions to
begin with, and which conditions they might be.

Suppose, for example, that our residual representation p is the Galois represen-
tation arising from the p-division points of an elliptic curve E, and let’s assume p is
absolutely irreducible. Then we can take S to consist of the primes of bad reduction
of E, plus p and oo, and we have at hand at least one lift to characteristic zero, the
representation

PEp: GQ,S — GLQ(ZP)

arising from the Galois action on the Tate module of E. In this situation, the thing
to note is that we know quite a bit about these representations. For example, we
know that the determinant of p is the p-adic cyclotomic character, and we know that
(the prime-to-p part of) the Artin conductor of pg , is equal to (the prime-to-p part
of) the conductor of E. So, for each of the primes in .S, we have some information on
how the representation behaves when restricted to the decomposition group at that
prime. If we are trying to make our deformation problem “as tight as possible” (for
example, so that pg, is a deformation captured by our problem but at the same
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time so that it is possible that every representation captured by our problem is
modular), we need to impose deformation conditions that reflect the properties of
these deformations. These conditions are of two types. First, there is the condition
on the determinant. As the discussion above suggests, this is not too serious an
issue. Second, there are local conditions at primes £ € S. These are deformation
conditions that are posed in terms of the restriction of p to the decomposition
groups G, (as we did above for the example of the “finite flat” condition).

Let p : Gg,s —> GLy, (k) be a residual representation. Formally, a global Galois
deformation problem Q is the problem of representing a subfunctor of D5 defined
by giving, for each non-archimedean prime ¢ € S, a deformation condition Q;, for
the local residual representation p Go,- A global Galois deformation problem with
fized determinant is the same, with an added “det = ¢” condition.

The following is easy to check:

Lemma 6.7. A global Galois deformation problem is a deformation condition for
representations of Gg,s.

Proof. Easy, given that we know that each of the local “pieces” is a deformation
condition. |

As always, we want to understand the tangent space to the subfunctor Dg
associated to a global Galois deformation problem. The main thing we need to
be careful about is that the local conditions Q, are defined only in terms of the
restriction of the representations to Gg,. As before, let Hf (Gg,s, Ad(p)) be the
subspace of H'(Gg,s,Ad(p)) corresponding to the tangent space of Dg, and let
H,(Go,,Ad(p)) be the subspace of H'(Gg,, Ad(p)) corresponding to the tangent
space of the subfunctor of the local deformation functor defined by the local con-
dition Q.

Theorem 6.8. The diagram
Hg(Go,s,Ad(p)) —— H'(Go,s,Ad(p))

| |

@ Hng (G@e ,Ad(p)) — @ H' (GQz ,Ad(p))
les les

where the horizontal arrows are inclusions and the vertical arrow on the right is the
restriction map on cohomology, is Cartesian, that is, it identifies HY, (Gg,s, Ad(p))
with the set of elements of H{,(Gg,s,Ad(p)) which, for each £ € S, map under
restriction to the image of Hbe (Go,,Ad(p)).

Proof. Straightforward from the definitions. O

This shows that the tangent space to the functor Dg is a kind of “Selmer
group,” i.e., a part of the global cohomology group defined by local conditions for
each /€ S.

Representations that are ordinary at p

An interesting application of the ideas in this lecture is when 7 is a two-dimensional
global Galois representation, so that II = G s for a finite set of primes S, and we
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choose only one local deformation condition, requiring that our deformations be I-
ordinary, when I = I, is an inertia subgroup at p. We say that such representations
are ordinary at p.

So suppose p is ordinary at p, and consider the functor D® which is defined by

D°(R) = {deformations of p to R which are ordinary at p}.

As before, this is representable, and we call the representing ring R°(p) the universal
ordinary deformation ring. This is a quotient of the full universal deformation ring
and parametrizes deformations of p which are ordinary at p.

There are two reasons to give special attention to the universal ordinary de-
formation ring. The first is that, in many cases, it follows from Wiles’ work that
if p is modular, then any ordinary deformation of p is also modular (perhaps in
an extended sense). Another way of saying this is that we can prove, in many
cases, that the ring R%(p) can be identified with a certain p-adic Hecke algebra (a
localization of the Hida algebra, to be discussed further in the next lecture).

The other reason the universal ordinary deformation ring is interesting is that,
in certain cases, the homomorphism R(p) — R°(p) is well understood. For exam-
ple, one can prove the following result.

Proposition 6.9 (Mazur, Martin). Let S = {p, 0}, k=F,, and let
p: GQ’S — GLg(Fp)

be ordinary (at p). Let w denote the Teichmiiller character Gg,s — E. Suppose
either that

i. detp # l,w,w_l,w%;l, or that

it. P is tamely ramified.
Then the kernel of the canonical homomorphism R(p) — R°(p) is generated by
two elements.

See [98] and [93]. Bockle has now improved considerably on this; see [5]. The
reason such results are interesting is that they give us a way from lifting information
about RY to information about R.

Corollary 6.10. Under the assumptions of the Proposition, we have
Krull dim (R°(p)/pR°(p)) > 1.

If in addition we know that dimtxo(5) < 1, then we have R°(p) = Z,[[T]] and R(p)
is a power series ring in two variables over R°(p).

One might describe this result as saying that the ordinary deformation ring
“controls” the full deformation ring. In practical terms, this means that studying
ordinary deformations (when they exist, that is, when p is ordinary) can lead to
results about all deformations.

Complements to lecture six

As we pointed out above, condition (iv) in the definition of a “deformation condi-
tion” follows from conditions (i) to (iii). The argument we give here is due to Mark
Dickinson.

Suppose, then, that we have a deformation condition Q satisfying conditions
(i) to (iii) in the definition. Then (by property (ii)) we have a subfunctor Dg of
the deformation functor D, and (by property (i)) we know that Dg(k) = D(k) are
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both sets with exactly one element. The result we want to prove is essentially the
content of the following proposition:

Proposition 6.11 (Dickinson). Let F be a set-valued functor on C°, and let G be
a subfunctor of ¥'. Suppose that the following condition holds:

Property (*): If A — C and B — C are homomorphisms of ar-
tinian coefficient rings, and the push-forwards to F(A) and F(B) of an
element x in F(A xX¢ B) are in G(A) and G(B), respectively, then x
is in G(A x¢ B).
Suppose j : A — B is an inclusion of artinian coefficient rings and x is an
element of F(A) whose push-forward by j lies in G(B). Then z is in G(A).

Proof. The main ingredient in the proof is the notion of an equalizer in the cate-
gory of artinian coefficient rings, Suppose we have two homomorphisms of artinian
coefficient rings f, g : B — R; we say a homomorphism j : A — B is the equalizer
of f and g if two conditions are satisfied:
i. The composite maps are equal: foj=goj.
it. The map j is “universal” in the sense that given any other homomorphism
h: A" —s B such that foh = goh there exists a homomorphism A’ : A — A
such that h = j o h'.

In other words, any other homomorphism which “equalizes” f and g factors through
the equalizer map j. It is easy to see that equalizers are always injective.

The strategy of the proof is, first, to show that the result is true when j : A —
B is the equalizer of some pair of homomorphisms, and second, to show that we
can deduce the general case from this one.

Step One: If j : A — B is an equalizer in the category of artinian coefficient
rings, then the result holds. Suppose there are homomorphisms f,g: B — R such
that j is the equalizer of f and g. Then we have a Cartesian diagram?

A——p

ijijl lkag
g
R RxR

Now j.x € G(B) and, by functoriality, (f o ).z € G(R), and Property (*) tells us
that z € G(A).

Step Two: If the inclusion j is not a surjection, then there exists a proper
subring C' of B which contains the image of j and for which the inclusion C — B
is an equalizer. If j is not surjective, then neither is the induced map on cotangent
spaces, and so the dual map

Hom(B, k[e]) — Hom(A, k[e])

is not injective. Thus, there exist distinct maps f, g : B — k[e] which agree on A.
We take C' to be the equalizer of these two maps.

Wrap-up: The result now follows by induction on the length over W (k) of
B/A. If j is surjective (the base case), there is nothing to prove. If not, we use
step two to factor j : A — B as A — C' — B where the second map is an
equalizer. By step one, the image of z in F(C) lies in G(C). Since the length of

2i.e., a fiber product diagram, see page 40.
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C/A is smaller than the length of B/A, x is in G(A) by the induction hypothesis,
and we are done. O






LECTURE 7
Modular Deformations

The idea that “naturally occurring” Galois representations should “come from”
modular forms has become an important number-theoretical principle, and the
success of Wiles, Taylor, Diamond, Conrad, and Breuil in proving that every elliptic
curve over Q is modular strengthens this expectation. Our theory has produced
for us a plethora of representations; is there any sense in which they all come from
modular forms? Alternatively, can we make sense of the idea that “most” of them
do?

First of all, in a deformation theory setting the question makes the most sense
when we start from an absolutely irreducible odd two-dimensional Galois repre-
sentation p : Go,s — GLa(k) which is attached to a modular form. The Serre
Conjecture claims that all such residual representations are indeed attached to a
modular form, and we know that if this is true then (with some caveats if p = 2 or
p = 3) we can require this modular form to have “optimal weight and level” in the
sense of [117]. If we know that the residual representation is modular, then we can
ask whether the deformations are modular too.

The first difficulty one faces is making precise what is meant by “modular
form.” The most obvious thing is to consider the classical modular forms (we’ll
recall the theory below). It’s clear, however, that unless we add some very stringent
deformation conditions there is no chance that all deformations will be modular,
though it makes sense to ask whether the modular deformations are “dense” (in
various senses of the word) in the space of all deformations.

The other option is to generalize the notion of “modular.” The correct theory
here would be some sort of p-adic theory of modular forms, which should be the
“p-adic completion” of the usual theory. Such a theory is in fact available, and
produces enough “modular deformations” so that there is some chance that these
are in fact all the deformations. We will only mention some of the bare facts of this
theory, and then explain (in the next lecture) how in at least one case one can prove
that “all deformations are (in this extended sense) modular.” This still leaves us,
of course, with the problem of “locating” the deformations which are modular in
the “classical” sense among the others.

An introduction to modular forms can be found in [13]; for more details, see the
references therein. For the p-adic theory, see the expository account by Matthew
Emerton in Appendix 3, which includes a survey of the literature.
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Classical modular forms and their representations

We begin from the “classical” theory of modular forms. Let IV be an integer rela-
tively prime to p. Given non-negative integers k and v, we will write Si(I'1 (Np”), Z,)
for the space of cuspidal modular forms of weight & on I'y (Np¥) defined over Z,
(i.e., whose g-expansions have coefficients in Z,). What this means is the follow-
ing. The classical space Si(I'1(Np”),C) of complex modular forms of weight &k on
'y (Np”) has a basis consisting of modular forms whose g-expansions at infinity
are such that all the coefficients are integers. By a “modular form defined over
Z," we just mean a Zylinear combination of this integral basis. Equivalently, if
we write Si(I'1 (Np”), Z) for the subspace of Si(I'1 (Np”), C) consisting of modular
forms whose g-expansion coefficients at infinity are integral, then Si(T'1(NpY),Z)
is a finite Z-module and it is known that

Sk(T1(Np”),C) = Sk(T1(Np"),Z) @z C,
and our definition amounts to defining the Z,-space analogously:
Sk(T(Np"), Zy) = Sk(T1(Np”), Z) ©z L.

The choice of Z, as the ring over which our forms are defined is made for simplic-
ity; any discrete valuation ring O finite over Z, would work just as well, and the
definition would be the same.

This definition has a somewhat arbitrary “feel” to it, of course, not least because
it privileges the cusp at infinity over the other cusps (the only reason to do this
is not to have to bother with adjoining roots of unity to our base ring). In fact,
one can do much better by using a geometric definition. Suppose N > 5 (and,
as we agreed above, not divisible by p), and let Z ) be the localization of 7Z at p
(so that Z,) = QN Zp). Then there is an algebraic curve X;(Np”) defined over
Z(py which parametrizes (generalized) elliptic curves with an appropriately-defined
Np”-level structure (basically, the choice of a point of order Np”, but this can’t be
taken literally when v > 0, so one must find a more sophisticated description that
will work in our situation). There is a canonical invertible sheaf w on X;(NpY)
constructed in terms of the universal (generalized) elliptic curve over X;(NpY),
and we can define Sy (1 (Np¥),Zy) as the global sections of w*. If we extend
scalars from Z,) to C this space of global sections is exactly the classical space
Sk(T1(Np”),C), and thus it makes sense to define Si(I'1 (Np¥),Z,) as the global
sections of w* over X; (Np“)z, - This gives almost the same space as above;
in fact, it is contained in the space above with finite index equal to a power of
p. The difference is that the geometric definition automatically forces integrality
(suitably defined) at all the cusps rather than only at the cusp at infinity. The
case of N < 5 can then be dealt with (at least for p # 2, 3) by taking fixed points
under the appropriate group. For an introduction to this view of things, start with
Appendix 3, then see [79] for the case v = 0; for the case v > 0 it is harder to give
good references,! but [39] and [85] are the natural starting points.

In what follows, one can work with either definition of Si(I'1(Np”),Z,). In
fact, more often than not we will want to work with Si(T'1(Np”),O), where O is
a discrete valuation ring which is finite over Z,. If O contains enough roots of
unity, then it makes sense to require that the g-expansions at all the cusps have

IThis is particularly true if one wants to define the Hecke operators geometrically, the trickiest
one in our case being the U, operator.
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coefficients in O, and we recover the same space as the one given by the geometric
definition. It’s important to note, however, that it is the geometric definition that
really allows us to understand the situation.

The space Si(T'1(Np*),Z,) is a finite free Z,module on which act the Hecke
operators Ty, £1 Np, defined in the usual way. One can also define? operators Uy
for £|N and, when v > 0, an operator U, which acts on g-expansions by

Up (Z anqn) = Zanpqn-
We will be particularly interested in eigenforms, that is, forms which are simulta-
neous eigenfunctions all for the Hecke operators.

There is another family of operators acting on our space, the diamond opera-
tors® (n), n € (Z/NZ)*. If a modular form is an eigenfunction for these operators,
then we have (n)f = e(n) f for some character ¢ which we call the tame nebentypus
character of f. We extend this action to an action of Z x (Z/NZ)*, which we
call the “double diamond” action f + (z,y)f. The action of z € Z, on a form f
is determined by a combination of its weight and the p-part of its nebentypus char-
acter. In particular, if f is of weight k£ on I'; (Np¥), and has nebentypus character
€ = enep, where ey is a character on (Z/NZ)* and ¢, is a character on (Z /p*Z)*,
then

(z,9)f = en(y)ep(2)z" f.

(For more details about, and a more natural definition of, this action, see [57].)
We will require eigenforms to also be eigenfunctions for the diamond action (which
will usually require them to be defined over an extension O of Z,, as we mentioned
above).

The reason for “twisting” the diamond action by the factor z* is that this
results in operators that act on the sum (over k) of the spaces Si(I'1 (Np¥),Zp) in
a way that preserves integrality of g-expansions. (See [81] for an example of how
this can be used to find congruences between modular forms). This will be helpful
for the p-adic theory in the next section.

We will say an eigenform is normalized if its g-expansion (at infinity) is of the
form

fl@)=q+aq® +azd®+....

In this case, it is easy to see that T,(f) = a,f for all £1 Np.

Let O be the valuation ring in a finite extension K of Q,. Given a form
f € Sp(T1(Np”),0) which is an eigenform for the T, for all £1 Np and for the
diamond operators, one can construct a Galois representation py which is attached
to f in the following sense. Suppose we have T,f = a,f and (¢,£)f = A(¢) f for all
£t Np. Let

S = {primes dividing N} U {p, o0},

2There seems to be no agreement about whether one should call these operators U, or simply
define T, differently when ¢|N. The advantage of retaining the distinction is that then the action
of T, on g-expansions is always the same as one varies k, N, and v, and is different from the action
of Uy. In the case when £ = p, the distinction between T, (which acts on our space when v = 0)
and U, (which acts when v > 0) does matter for what we want to do.

3Notice the notational weirdness here: these are only some of the usual diamond operators on
Sk(T1(Np¥),Zp). We will add the p-part when we move to the “double diamonds” in a minute.
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and let ®, € Gg,s denote a geometric Frobenius transformation at £. Then one can
construct a Galois representation

pr: GQS — GLQ(O)

such that py®«q K is semisimple, and such that f and p; are related by the formulas

det py(®y) = %/\(Z) and Trpp(®e) = ar
for each £ f Np. (Readers familiar with the usual definition should remember that if
f is of weight &k with nebentypus x we have A(£) = x(£)€*.) Tt is easy to see (because
pr®9 K'is semisimple) that py is completely determined (up to equivalence over
K) by f.

How is the representation attached to f obtained? The construction is due to
Eichler, Shimura, Deligne, and Serre, and it is quite complicated. When the form
f is of weight 2, one finds the representation by considering the Jacobian of the
modular curve X;(Np¥). There is an action of the Hecke algebra on the Jacobian,
and the eigenform gives a map from the Hecke algebra to R which allows us to “cut
out” a piece of the étale cohomology of the Jacobian where the Galois group acts
as we want (this is the dual of the usual approach, which finds the representation
in the Tate module of the Jacobian). For general weights k, things get a lot more
complicated. See [117, Appendix 2] for an account of how this works for k = 2,
and [144], [37], and [40] for the beginnings of the rest of story.

Given such a py associated to a form f defined over some discrete valuation
ring O which is a finite extension of Z,, we can reduce this modulo the maximal
ideal m C O. The resulting representation (which is defined over the residue field
of ©) may not be semisimple, so we take its semisimplification, call it the reduction
modulo the maximal ideal of the representation attached to f, and denote it by p.
The actual reduction may depend on the homomorphism Gg s — GL2(0O) rather
than just on its equivalence class; the semisimplification, however, is the same
for any homomorphism in the equivalence class. (Notice that if Py is absolutely
irreducible, we do not need to take the semisimplification step, and py is just the
reduction of py. We will always restrict to this situation in what follows.)

From our point of view, we should note that if we have two normalized eigen-
forms f and g (perhaps of different weights and with different values of v) which are
congruent modulo m (in the sense that their g-expansion coefficients are congruent
modulo m) then their Hecke and diamond eigenvalues are the same modulo p, so
that the reductions modulo p of their Galois representations are the same also. In
other words, if f = §, then the two representations py and p, are (different) defor-
mations of the same residual representation p = p; = p,. In fact, we can weaken
this somewhat: all we need is for the eigenvalues for T, with £ { Np to be the same,
and this will happen if

an(f) = an(g) (mod m)

for all n such that ged(n, Np) = 1, where a,(f) (resp, a,(g)) denotes the n-th
g-expansion coefficient of f (resp, g).

In order to be able to think about whether all (or many) deformations are
modular, we need to collect some information about these representations. The
properties of residual modular representations are discussed in detail in [117], to
which we refer the reader. We record here only a few useful facts, especially having
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to do with ramification. Given a residual Galois representation
p: GQS — GLQ(k),

one may measure its ramification outside p by its conductor, which we denote
by N(p). Since p is certainly not ramified at primes that do not divide Np, the
conductor is a product of powers of primes dividing N,

Np)y= [ e,
teS—{p}

where the numbers n(¢,p) are defined as follows: choose a place of Q over ¢, and
let I = I, be the corresponding inertia group; let V' = k x k with the Gg s-action
given by p, and let V be the subspace of V fixed by p(I); then

n(l,p) =2 —dim Vo + sw(p),

where sw(p) is the Swan conductor of (the restriction to a decomposition group at
¢ of) p. (For a definition, see, for example, [137].) Note that if dim V¢ = 2, then
p is unramified at ¢ and n(¢,p) = 0 (and in particular sw(p) = 0 in this case). We
know that 7 is tamely ramified at ¢ if and only if sw(p) = 0, and that p is f-ordinary
exactly when dim V = 1.

Of course, the conductor of p can be much smaller than the tame level N of
the modular form from which it comes. In fact, that is a major theme of the recent
work on Serre’s conjecture reported in [117].

Now let’s consider the situation for a lift of p to characteristic zero. As before,
let K be a finite extension of Qp, let O be its valuation ring, and assume the residue
field of O is k. The conductor of a deformation

p: GQ,S — GLQ(O)

of p (which may or may not be modular) is defined in an analogous way, as

Np)= [ e,

teS—{p}

where we take V' = O x O with the action of G s given by p, V; is the submodule
of invariants under the action of an inertia group at ¢, and set

n(l,p) = 2 —rankq Vp + sw(p) = 2 — rankq Vo + sw(p).

(The fact that the Swan conductors of p and of p are equal is well known; it is so
because the wild inertia group at £ is a pro-£-group, while, as noted in Lecture 5,
the kernel of the reduction map GL2(A) — GLa(k) is a pro-p-group, so that all
the wild ramification will already occur in the p.)

Note that we have eliminated powers of p from the conductor; this is inevitable,
since we are not assuming p is a part of a compatible family of /-adic representations.
(For a modular deformation, we have an f-adic representation for every prime ¢,
and the exponents in the conductor agree. This allows us to define the p-part of
the conductor by looking at an f-adic representation for £ # p. If we want to do
deformation theory, however, we have to stick to a p-adic setting.) That it is the
“tame level” that is detectable from the representation is also pleasantly consistent
with the fact that only the prime-to-p part of the level is relevant in the context of
p-adic modular forms, as we will see below.

What do we know about these representations (and specifically, their conduc-
tors)? In characteristic zero, we know
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e If f is a newform of level Np”, then the (prime-to-p part of the) Artin con-
ductor of the representation py is equal to N. (This is an important theorem
of Carayol.)

e The local representations pf|G@e’ for ¢|N, £ # p, are well-understood via the

“local Hecke correspondence.” (See [15] or the more accessible [14] for the

details, which are complicated.)

Modulo p, we know a little more. In particular, the recent work on Serre’s con-
jecture involved a quite detailed understanding of the local representations modulo
p. See [117] for more details.

For the deformation theory, it is important to compare the situation in charac-
teristic zero with the situation in characteristic p. For example, the following result
captures what can happen to the conductor:

Proposition 7.1. Let p be a residual Galois representation
p: GQ,S — GLg(k),

and let p be any deformation of p to characteristic zero. Then, for each £ € S:

i. if p is unramified at £, then n(¢, p) < 2;

ii. if p is L-ordinary, then n(¢,p) < n(f,p) + 1;
iti. if p and p are both L-ordinary, then we have n(¢,p) = n(l,p);
iv. if p is ramified at £ but not L-ordinary, then n(¢,p) = n(f,p).

Proof. This all follows immediately from the fact that
n(l, p) —n(f,p) = dim Vy — rank Vj,
since rank V < dim Vy < 2. O

The local representation pf|G@,p is somewhat harder to understand. The main
tool for studying it is Fontaine’s theory of p-adic Gg,-modules. Using this language,
we can describe what we know about the local representation attached to a modular
form by saying that it is either crystalline (if v = 0) or, in general, potentially semi-
stable. See [52] for definitions, discussion, and a study of the deformation problems
attached to such conditions.

We can also use the p-adic Hodge theory of Tate and Sen to study the local
representation. We know that the local representation pf|G% is of Hodge-Tate
type, and the Hodge-Tate-Sen weights (as defined in [129] and [130] ; see also
[97] and [100]) attached to it are (0,k — 1). In particular, any representation that
comes from a classical modular form must be in the “Sen null subspace” of the
deformation space, which consist of those deformations which have one of their Sen
weights equal to zero. This is known to be a codimension one analytic subspace
of the (rigid-analytic subpsace attached to the) full deformation space. See the
discussion in §7 of [100] for more details.

One can “move” from the Sen null subspace by twisting deformations by char-
acters of infinite order which reduce to the trivial character modulo p (sometimes
called “wild” characters of infinite order). See [97] and [100] for a more careful
discussion of how twisting can be interpreted as the action of a formal group on the
deformation space that is “essentially transversal” to the Sen null subspace. (We
will get back to this in the next lecture.)

One final bit of information is also quite useful. If the eigenvalue for the p-
th Hecke operator (either T, or U,, depending on whether v = 0 or v > 0) is



LECTURE 7. MODULAR DEFORMATIONS 89

a p-adic unit, then the local representation pf|G:‘p is p-ordinary (see [106], for
example). For residual representations, the converse is true (see [78]); the converse
for representations in characteristic zero is known in some cases (basically, whenever
one knows an “all ordinary deformations are modular” theorem, see below).

So let’s summarize what we know. In the full deformation space, which we
expect to be three-dimensional by the dimension conjecture (see page 55), the rep-
resentations that come from (classical) modular forms sit in various smaller sub-
spaces: first, they all sit in the Sen null subspace, which (since we know it is of
codimension one) we expect to be two-dimensional. Second, a representation com-
ing from a modular of weight k has determinant equal to (a finite character times)
the (k — 1)-th power of the cyclotomic character, and we can consider the subspace
of the deformation space corresponding to deformations with that determinant.
This again gives a space of codimension one. If the modular form is one whose
p-th Hecke eigenvalue is a p-adic unit, the representation is p-ordinary, and we can
consider the subspace corresponding to p-ordinary deformations (by contrast with
the others, this is usually one-dimensional). If we’re even more ambitious, we might
try to pin down the subspace corresponding to deformations that are potentially
semi-stable (if there is one). Finally, we can try to get the conductor right by
controlling the ramification at the primes ¢ # p.

This raises a number of interesting questions about the deformation space.
Which of these conditions are “deformation conditions” in the sense of Lecture 6,
and hence define algebraic subspaces of the deformation space? How do these
various subspaces intersect?

On the other hand, this discussion also points out that modular deformations
are very special, and that they at best fill up only a small part of the deformation
space. If we hope to have a theorem saying something like “all deformations are
modular,” we will either have to restrict the meaning of “deformation” (by introduc-
ing deformation conditions, as in Lecture 6) or extend the meaning of “modular.”

p-adic modular forms

One way of extending the meaning of a “modular deformation” is to work with
“p-adic modular forms.” In this section we give a very rough description of what
this theory looks like. See Matthew Emerton’s survey in Appendix 3 for a much
more careful description, and [134], [79], [82], [57], [26], [27], and [28] for various
accounts of the details.

The theory of p-adic modular forms gives us a very large space V(N,Z,) of
“parabolic p-adic modular functions defined over Z,.” We can go from forms over
Zyp to forms over more general p-adically complete and separated rings R simply
by defining V(N,R) = V(N,Z,)®R. Rather than describe this space and its
construction, we note only that for any weight k£ and any v > 0 there exist inclusions

Sk(T1(Np”), Zyp) = V(N, Zy),

and that the union of the images of these inclusions is dense in V(N,Z,) with
respect to the p-adic topology derived from the g-expansions. Thus, V(N,Z,)
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contains every single one of the eigenforms we have considered so far, plus many
more that are obtained by some sort of limiting process.*

There are naturally-defined Hecke operators T, (for £t Np) and diamond op-
erators (z,y) on V(N,Z,). The Hecke operators act as expected on g-expansions,
and both the Hecke and the diamond operators restrict to the ones we defined above
when we apply them to classical modular forms. (The other Hecke operators, and
in particular the U, operator, also extend, and the U, operator in fact plays an
important role in the theory. For now, however, we will stick with a smaller set of
operators.)

The easiest way to define the Hecke operators on V(N,Z,) is to use the
fact (first proved by Hida) that for any fix v the union over k of the spaces
Sp(T1(Np”),Zp) is dense in V(N,Zjp). Using this, we can define the Hecke al-
gebra T as the inverse limit over k of the (restricted) Hecke algebras® acting on
Sp(T1(Np”),Zp). The action of T extends to all of V(N,Z,) by continuity. We
can check that T is independent of v, so that we get an algebra of operators on
V(N,Z,), and that the T, act as expected on g-expansions. Each of the Hecke al-
gebras at finite level has a natural p-adic topology, and we give T the inverse limit
topology. Any p-adic modular function f € V(N,Z,) determines a continuous map
T — Z, by mapping an operator T to ai(Tf), the first g-expansion coefficient
of Tf. This map is a homomorphism if and only if f is a normalized eigenform;
in that case, it maps each operator to its eigenvalue. More generally, for any p-
adically complete and separated ring R, any normalized eigenform f € V(N, R)
gives a continuous homomorphism T — R.

(One might suspect that any such homomorphism determines a form f. This
would certainly be true if we had included all the Hecke operators in T. It is a
little more problematic with our setup.)

Now suppose R is a ring in € and suppose that we have a form f € V(N, R)
which is an eigenform for T, (for all £{ Np) and for the diamond operators. Then f
determines a homomorphism ¢; : T — R, and hence, after reduction modulo the
maximal ideal, a homomorphism T — k. Let m be the kernel of this homomor-
phism, and let R,,,(f) = Ty be the completion of T at m.® Given another eigenform
g € V(N, R), the corresponding homomorphism ¢, factors through R, (f) if and
only if f and g have the same Hecke eigenvalues for all T, with £{ Np and for all
the diamond operators (i.e., if and only if the eigenvalues of f and of g are the
same modulo the maximal ideal). In other words, R,,(f) is a kind of “universal
deformation ring” for the packet of Hecke eigenvalues coming from the residual
eigenform f.

Now let p be the residual Galois representation attached to f. If 5 is absolutely
irreducible, then it has a universal deformation ring R(p). To get a “universal mod-
ular deformation” of p, we need to construct a deformation of p to the completed

Hecke algebra R,,,(f). By the universal property of R(p) constructing such a thing

4Eigenforms in V(N,Z,) are sometimes limits of classical eigenforms, but more commonly they
are limits of classical modular forms which are not eigenforms, but which are “eigenforms modulo
p™” for bigger and bigger n.

5That is, the Zp-submodule of the algebra of endomorphisms of Sy (T'y (Np"),Zp) which is gener-
ated by the T, with £1 Np and by the diamond operators.

6The m in the notation R, (f) stands for “modular.” The point is that (in many cases) this ring
will turn out to give a “universal modular deformation” of the representation p corresponding to

F.
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is the same as constructing a homomorphism R(5) — R, (f). This turns out to
be possible.

What we get is the following. Fix the “tame level” N, and let

S = {primes dividing N} U {p, co}.

Suppose we have an eigenform f € V(N,T,). Since the classical forms are dense in
V (N, R), we know that f is equal to the reduction of a classical eigenform, and in
fact we can assume that this classical eigenform is of level N. In particular, there
is a Galois representation attached to f; let 5 : Gg.s — GLa(k) be the attached
Galois representation.

Theorem 7.2 (Gouvéa, Hida). There exists a representation

Pm : Go,s — GLa(Rim(f))
such that, if ®y is a geometric Frobenius at £{ Np,
1
14

In [57], this theorem is proved by constructing a homomorphism from the
universal deformation ring of p to the completed Hecke algebra. In the original
version, there were technical assumptions which have since been removed by work
of Carayol (see [16] and [101, §6]). Hida’s proof (in [73]; see also [72]) gets around
these technicalities by using the theory of pseudo-representations (also known as
pseudo-characters).

A (perhaps surprising) consequence of this theorem is that there exists a Galois
representation attached to a p-adic eigenform f even when that eigenform is not
a classical modular form, provided that the residual representation attached to a
classical eigenform that is congruent to f is absolutely irreducible. These repre-
sentations are considerably more mysterious than the representations attached to
classical eigenforms. For example, they are not necessarily of Hodge-Tate type (but
see [86] for a positive result along these lines).

If p is absolutely irreducible, so that the theorem applies, we call p,,, the uni-
versal modular deformation of p. It parametrizes all the deformations of p which
come from p-adic modular forms (which of course includes the ones which come
from classical modular forms). Since the universal modular deformation is itself a
deformation of p, we get a homomorphism

det pm((bf) = (Z, £> and rI‘rpm((Pf) = Tl'

R(P) — R ().

The trace of the Frobenius ®, in the universal deformation ring must map to T,
in R,,(f). Since the Hecke operators topologically generate R,,(f), the homomor-
phism is surjective.

Thus, we have constructed a “universal modular deformation” which cuts out
the portion of the deformation space which corresponds to deformations attached to
p-adic modular forms. This can be viewed as a sort of Zariski closure of the points
in the deformation space corresponding to modular deformations in the classical
sense. (We do not expect it to be the closure in the p-adic topology, because p-
adic eigenforms need not be limits of classical eigenforms.) The question, then, is
how big a portion of the deformation space we have obtained. It will be the full
deformation space exactly when the homomorphism

R(p) — Rn(f)
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is an isomorphism. As we will see in the next lecture, in at least one case we know
that it is in fact the full deformation space, i.e., we know that every deformation
is “pro-modular” (i.e., comes from a p-adic modular form). On the other hand, we
will see that unless N = 1 we cannot escape imposing some sort of deformation
condition before we can get a positive result.

The game we just played with the big p-adic Hecke algebra can also be played
with classical Hecke algebras. Thus, suppose we have an eigenform

f € S(T1(N), Zy),

and let p be the residual representation attached to f. (Eigenforms defined over
finite extensions of Z, work exactly the same way; we work with Z, for simplicity.)
Let Tx(NN) be the subalgebra of the endomorphisms of Si(I'1(IV),Z,) generated
by the Hecke operators T, for £ Np and by the diamond operators. As before,
the eigenform f determines a homomorphism Ty (N) — Z,; reducing modulo the
maximal ideal gives a homomorphism Tj(N) — F, whose kernel is a maximal

ideal m. Let T(f) be the completion of Ty () at the maximal ideal m. Then there

is a surjective homomorphism from the universal modular deformation ring R,,(f)
to T(f), and therefore there exists a deformation p; of p to T(f). (Note that this
is generally not the same as the Galois representation attached to f. In fact, they
are the same only if T(f) = Z,.) This deformation parametrizes all deformations
of p which come from classical modular forms of weight k£ and level N, i.e., it plays
the same role, for weight k& and level N, that the big Hecke algebra R,,(f) plays
for all p-adic modular forms.

If we could determine the representation-theoretic properties of py with suf-
ficient precision, we could hope to write down deformation conditions that would
restrict our deformation problem to “those deformations that look as if they come
from modular forms of weight k£ and level N.” One part of this is not difficult: to fix
the weight, we need a determinant condition. Fixing the level, as before, boils down
to imposing local deformation conditions at the primes dividing N. The subtle part
is finding a deformation condition that will restrict us to classical modular forms.
This would presumably be a local condition at p. In Wiles’ work, for example, this
condition was either that the deformation be p-ordinary or that it be flat at p.

If we successfully find the correct set Q of deformation conditions, then we get
a ring Ro(p) that gives us the universal deformation subject to those conditions.

This should give us a surjective homomorphism

Ra(p) — T(f).

As before, asking whether this map is in fact an isomorphism amounts to asking
whether “all deformations (of this kind) are modular (of weight & and level N).”
In comparison to the overall question about whether all deformations are modular,
this is both more precise (in particular, a yes answer to the question about the big
deformation ring does not imply a yes answer here without some extra work) and
perhaps more accessible. One reason for this is that the Hecke algebras T (N) and
T(f) are relatively well understood, while the big Hecke algebra R,,(f) is much
more mysterious (as are, of course, the universal deformation rings).

This approach to the problem, which works with fixed weight and level, is
what appears in the work of Wiles, Taylor, Diamond, Breuil, and Conrad on the
Shimura-Taniyama conjecture. For the most part, they work with weight k& = 2,
and consider several different deformation problems attached to & = 2 and varying
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levels. (For the crucial application to the representation attached to an elliptic
curve, it’s essential not to impose the condition that the residual modular form
f is of minimal level.) The hardest part of this work, as noted above, is to pin
down the deformation conditions that will restrict us to classical modular forms.
As we will see in the next section, this is easy to do in the ordinary case, because of
Hida’s “control theorem.” In the non-ordinary case, they use (variants of) the flat
deformation condition we discussed in Lecture 6 to force the restriction to classical

modular forms.

The ordinary case

The case of representations coming from ordinary p-adic modular forms is much
better understood than the general case. We say that a p-adic modular function
f € V(N,R) is ordinary if f belongs to the R-submodule of V(N, R) (topolog-
ically) spanned by generalized eigenforms” for the U, operator corresponding to
eigenvalues which are p-adic units. As Hida shows, there exists an idempotent e in
the endomorphism ring of V(IV, Z,) which commutes with the Hecke and diamond
operators and “picks out” the ordinary forms, so that ef = f if and only if f is
ordinary. On the representation theory side, Mazur and Wiles have shown in [106]
that if f is ordinary then the associated representation is also I,-ordinary in the
representation-theoretic sense discussed above, that is, the subspace fixed by inertia
in the representation space is of rank one and a direct summand. This nice match
between a “modular” condition and a representation condition, together with the
fact that thanks to Hida we know quite a lot about the Hecke algebra associated
to ordinary modular forms, allows us to set things up nicely ... and some of the
questions actually have answers.

First, we let T = €T and call it the ordinary part of the Hecke algebra (with
our definitions, e does not belong to T, so that T° is not actually a “part” of
T; nevertheless, this wording is instructive). As before, an ordinary eigenform
f € V(N, k) gives a map T° — k whose kernel is a maximal ideal m, and we write
RO (f) for the completion of T° at m. Then Hida proves the following theorem.

Theorem 7.3 (Hida). If p > 5, and p is absolutely irreducible, there exists a rep-
resentation

Py : Go,s — GLa(RY,(f))
such that, if ®, is a geometric Frobenius at £t Np,

1
det py(®e) = 5{6,0)  and  Trp,(2) =T,

We can think of Hida’s representation as the “universal modular-ordinary defor-
mation” of p, since it parametrizes all deformations of p which come from ordinary
p-adic modular forms. One of the more important things about R% (f) is that
one knows what sort of ring it is: Hida showed that it is a finite flat algebra over
A =Z[[T']]. One also knows, by work of Mazur and Wiles, that the representation
p;, is ordinary in the sense of representation theory.

Suppose p is absolutely irreducible and attached to an ordinary modular form

f, so that we also know that p is ordinary in the representation-theoretic sense.

7An eigenform f for the Uy operator satisfies (Up — \)f = 0 for some \; we say f is a generalized
eigenform attached to the eigenvalue X if it satisfies (U, — X\)™ f = 0 for some n > 1.
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Then we have constructed various deformation rings: the universal deformation ring
R(p), the universal modular deformation R, (f), the universal ordinary deformation

R%(p), and the universal modular-ordinary deformation R, (f). These fit together
in a diagram:

R(p) ——R°(p)

.

Rn(F) —= R0.(F)

with all of the maps in the diagram surjective. Around 1990, Mazur and I both
stated the conjecture that the vertical maps are in fact isomorphisms, that is,
that all deformations of a modular residual representation are (p-adically) modu-
lar. Similarly, we would conjecture that all ordinary deformations of a residual
representation coming from an ordinary modular form themselves come from ordi-
nary p-adic modular forms. As they stand, both conjectures seem unlikely to be
true unless N = 1, simply because, as the notation indicates, the top row depends
on p and the bottom row depends on f. This seems innocuous until we realize
that in the deformation theory we simply fixed a set of primes at which we allowed
ramification, while in the modular theory we fixed the tame level N. If we take a
form f of level N and think of it as of level N2, say, the top row does not change,
while the bottom row does. This requires us to make things a little more precise
before we make our conjecture.

Imposing deformation conditions
There are several choices as to how to proceed.

i- We can impose local conditions that force the conductor to remain equal to
N. If we assume that our form was chosen with “optimal level,” this amounts
to making p be “as unramified as possible.”

it. In addition to the local conditions, we can impose conditions that force the
representations to look like those that come from classical modular forms.
For example, in the weight two case, we could follow Wiles and Taylor (see
above) and require that the determinant be the cyclotomic character, impose
local conditions at £ # p, and at p restrict ourselves to representations that
are p-ordinary (if p is) or finite flat (if 7 is).

#14. We can also relaz some of the local conditions, provided we understand where
to look for modular forms that produce representations satisfying the relaxed
conditions.

Here’s a sketch of the first approach.

To be able to formulate the right conjecture about modularity, we must under-
stand the relation between the level N of a modular form and the (tame part of the)
conductor of the attached Galois representation. Suppose we have an absolutely
irreducible representation p which comes from a modular form f € Si.(T'1(N), k) (as
we mentioned above, there is no loss of generality in assuming f is of level exactly
N).
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For this whole section,® let p > 5. To measure the ramification of 5, we use,
as discussed above, its conductor. Since p is attached to a modular form of level
N, it follows from the discussion above that the conductor of p will be a divisor of
N, and in fact Proposition 7.1 gives a quite precise description of how the two can
differ. This lets us “control the conductor” in the deformation theory by imposing
local deformation conditions at the primes dividing N.

We describe the strategy in the “minimal case,” in which we assume that we
have chosen our modular form f so that the level N is optimal. (That this is possible
for p > 5 is one of the main theorems described in [117].) Once we have done that,
the conductor of p will be exactly equal to N. We will look for deformations that
“look as if they might correspond to forms of level N” by imposing local ramification
conditions at some of the primes ¢|N.

As usual, let

S = {primes dividing N} U {p, co}.

Now suppose that we take a discrete valuation ring R which is a finite ex-
tension of Z, and has residue field k, and suppose we have a classical eigenform
g € S (T1(N), R) such that § = f. Then it follows from Carayol’s main theorem
in [15] that the conductor of the corresponding representation p, is exactly N.

On the other hand, suppose p; is unramified outside S and p; = p. Then the
conductor of p; can indeed be bigger than N. Proposition 7.1 shows that this will
happen if and only if there exists a prime ¢ € S such that p is Iy-ordinary and p;
is not Ij-ordinary®. This gives us the clue about how to fix the problem.

Suppose, then, that p is an absolutely irreducible Galois representation arising
from a modular form f € Si(T'1(N), k) which is the reduction of a classical modular
form f € Sk(T'1(N), R) (with R as above), and assume that the conductor of 7 is
exactly N, i.e., that f is of optimal level. Let

S = {primes dividing N} U {p, oo},
and let
So = {{|N such that p is Iy-ordinary}.
(Let’s note in passing that one can determine which primes are in Sy in strictly
“modular” terms—see [58] for the details.) By our assumptions on f, the repre-
sentation py is also Iy-ordinary for every £ € Sp. Let Q denote the condition that

any deformation p be Ip-ordinary for all £ € Sy. This is easily checked to be a
deformation condition, and hence it defines a deformation ring:

Rn(p) = Ra(p)

This is the universal deformation ring for deformations unramified outside S and
ordinary at each £ € Sy, and we have a corresponding universal deformation

py : Go,s — GL2(Rn(p))-

We might call these the universal level N deformation ring and the universal level
N deformation, respectively.

8For p = 2 or 3 one needs to be careful with the issue of adjusting the level, and the theory of
p-adic forms requires a bit more care, so we prefer not to consider them here.

9This is true only because of our assumption that f has been chosen of minimal level. Without
this assumption, it could also be the case that p is unramified at £ while p is ramified. When one
considers a non-minimal deformation problem, this case must also be taken into account.
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If p is ordinary at p, we can do the analogous thing with the added deformation
condition of being I,-ordinary, and define R%;(p), the universal (p-)ordinary level
N deformation ring.

With these definitions, we can show that the homomorphism R(p) — R (f)
and (if p is ordinary at p and f is an ordinary modular form) the homomorphism
RO(5) — RO (f) factor through the level N deformation rings, giving maps

@ Ry (@) — Rin(f)
and (if p is ordinary at p and f is an ordinary modular form)
(II) Ry (P) — R0, (f)

Both of these maps are known to be surjective (see above, or [58] for more detail),
and it is now reasonable to conjecture that they are in fact isomorphisms.

Conjecture. The maps (I) and (II) above are isomorphisms.

This conjecture is due to Mazur, though it seems that it was first stated in print
in [58]. What it says is that any deformation of a modular residual representation
is p-adically modular, i.e., attached to a p-adic modular form. The work of Wiles,
Taylor-Wiles, et. al. is sufficient to establish in many cases that (II) is an isomor-
phism. As for (I), it seems much harder to get a handle on it, basically because we
do not really know very much about the big Hecke algebra. We will sketch later an
argument (involving the “infinite fern” construction) that proves that (I) is true in
a particularly simple case (basically, when N = 1 and the deformation problem is
unobstructed).

Suppose we can prove (I). Then we know that every (appropriately ramified)
deformation comes from a p-adic modular form of level N. The question of how to
locate the deformations attached to classical modular forms now amounts to asking
whether we can locate the classical modular forms within the p-adic modular forms.
One important result is Hida’s “control theorem.” Let k be an integer; we say that
a p-adic modular form f is of weight k& if the left diamond operators act via k-th
powers:

(x,1)f =2*f for all z € Z,.

Theorem 7.4 (Hida). Let f be an ordinary p-adic modular form of weight k > 2
and level N. Then f is a classical modular modular form of weight k on I'y (N) N

Lo(p).

Two remarks are in order. First, if & > 3 the form f is in fact of level N. (This
follows, for example, from the discussion of p-old and p-new forms in the next
lecture.) Second, Hida in fact shows a much more general result which captures
classical forms of level Np¥ with v > 0; the main change is that one must consider
characters of Z, that are more complicated than raising to the k-th power.

For the non-ordinary case, things are much less satisfactory. Coleman has
proved a generalized control theorem (we will discuss it in the next lecture), but
it applies to p-adic modular forms which have a special property (they are “over-
convergent”). The problem is that we do not yet know how to distinguish the
representations attached to overconvergent forms from representations that come
from non-overconvergent forms.



LECTURE 8

p-adic families and infinite ferns

The goal of this final lecture is to explain how Mazur and I showed, in a very spe-
cial case, that “all deformations are modular.” This involves using Coleman’s work
on families of modular forms and the theory of p-old and p-new forms to produce
an intricate structure inside the deformation ring. The existence of this structure,
together with the assumption that the deformation problem is unobstructed, then
yields the result.

Here’s the basic setup. We’ll assume we are given a residual representation

ﬁ : GQ7{p7oo} — GL2 (Fp)

which is absolutely irreducible and comes from some eigenform of weight £ and
level 1 defined over Z,. Let f € S,(I'1(1),Z,) be the eigenform attached to p.

As before, we can consider the universal deformation ring R(p) and the universal
modular deformation ring R,,,(f) (which is just a completion of the big p-adic Hecke
algebra). Since we are assuming that N = 1, we don’t have to worry about imposing

local deformation conditions. As before, we then have a homomorphism

R(B) — R (f),
and we want to prove this is in fact an isomorphism.
The crucial assumption we will make is the following:

Assume that the deformation problem for 7 is unobstructed.

In particular, we have R(p) = Z,[[T1,T>,T3]]. This allows us to think of
the deformation space in a very concrete way: every triple of p-adic integers
(a1, az,a3) € pZy x pZy X pZ, defines a homomorphism

R(P) = Zp[[T1, T>, T3]] — Zp,

and this describes all such homomorphisms. Hence, we can think of the space of
deformations of p to Z, as a “cube with side pZ,,” i.e., a kind of affine three-
dimensional space. (The same is true over any extension of Z, also, of course.)

Our goal is to exploit two very simple ideas (the “slope” of an eigenform and
the theory of p-old and p-new forms), together with a powerful theorem of Coleman,
to produce a large number of points in our space that are attached to (classical)
modular forms. Under a mild technical assumption on the form f, there turn out
to be enough such points that one can conclude that the homomorphism

R(P) — Rm(f)
97
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must in fact be an isomorphism. Rather than give the full proof, we will set up the
ideas that allow us to construct many modular points and use them to construct
a very complex object inside the deformation space. The details of how to prove
that the existence of this object implies that the homomorphism above must be an
isomorphism can be found in [62].

The slope of an eigenform

As before, let N be a number not divisible by p. We’ll want to consider modular
forms on T'i(N), but for the p-adic theory it’s important to work with the U,
operator rather than the more natural T,. Since the space of forms on I'i (IV) is not
stable under U, we move to the next largest space that is, i.e., we look at modular
forms on the group 'y (N) N Ty(p). Notice that 'y (N) D T'1(N) NTo(p) D T'1(Np).

Suppose, then, that f € S, (1 (N) NTo(p),C,), where C, is the completion of
an algebraic closure of Q,. (We extend the field to C, to avoid having to worry
about the field of definition of our eigenforms. This way, our definition is as general
as possible.) Suppose f is an eigenform under the action of Up, and that the
eigenvalue is A,.

Definition 8.1. If f € S, (1 (N)NLo(p), C,) and Up(f) = A, f, we define the slope
of f to be the p-adic valuation of Ap:

slope(f) = ord, (),
where the p-adic valuation ord, is normalized by ord,(p) = 1.

The reason for the name “slope” is the following. We have an operator U, acting
on a finite-dimensional vector space Si(I'1 (N)NTy(p),Cp), and so we can compute
its characteristic polynomial Py (t) = det(1 — tU,). We have Py (t) € Z,[t], because
the U, operator (like all the other Hecke operators) is in fact rationally defined. We
can construct, in the usual way, the Newton polygon of this polynomial. (This is the
lower convex hull of the points (i,ord,(c;)), where ¢; is the i-th coefficient of Py(t);
see, for example, [59] for more on Newton polygons.) The slopes of the eigenforms
in Sp(T1(N)NTy(p),Cp) are exactly the slopes of the line segments making up the
polygon, and the length of (the projection on the z-axis of) the segments gives the
number of times each slope occurs among the eigenforms in this space.

We have considered, in the previous lecture, the situation in which slope(f) = 0,
i.e., in which the eigenvalue )\, is a p-adic unit, and we called such eigenforms
ordinary. As we pointed out, the Galois representation attached to such a form
is also (I,-)ordinary in the representation-theoretic sense, i.e., the representation
space contains a one-dimensional direct summand which is fixed under the image
of the inertia group at p.

When f has non-zero slope, it is far less clear how the slope may be understood
in terms of the representation. In fact, as we’ll soon see, there are almost always
forms of different slope which produce the same Galois representation.

On the other hand, the slope plays a very important role in the theory of p-adic
modular forms, especially in the case of “overconvergent” p-adic modular forms. A
first example of this, mentioned above, is Hida’s control theorem (Theorem 7.4),
which shows that ordinary p-adic modular forms of low weight are automatically
classical.
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p-old and p-new

To understand a little better the slopes of modular forms in Si(I'1 (V) Ny (p), C,),
we need to introduce the idea of p-old and p-new forms, and then consider what it
tells us about slopes.

The starting point is to notice that there are two inclusion maps

Sk(T1(N), G) = S(T1(N) N To(p), Gy).

The first is essentially the “forgetful” map: a form that is modular under the
action of the larger group I'1(N) is certainly also modular under the subgroup
'y (N)NTy(p). This gives an inclusion

ip : Sk(T1(N),Cp) — Sp(T1 (V) NTo(p), Cy)

which induces the identity map on g-expansions, so that

(ipf)(2) = f(a)-

The second map is a little bit harder to describe; let’s just say that there is an
inclusion

vp : Sp(T1(N), G) = Sp(T1(N) N To(p), Cy)

which acts on g-expansions by replacing ¢ by ¢”:

(vpf)(q) = F(q").
The map v, is a standard tool in the theory of newforms, which is due to Atkin,
Lehner, Miyake, Casselman, and Li; see, for example, [108] for more details.

The subspace of Si(I'1 (V) N To(p),C,) spanned by the images of i, and v is
called the p-old subspace, and the eigenforms in this space are called p-old eigen-
forms. There is a natural inner product on Si(I'1 (N) NTo(p),C,), and using that
inner product we can define the p-new subspace as the orthogonal complement, of
the p-old subspace. Eigenforms that belong to the p-new subspace are called p-new
eigenforms, or sometimes just p-newforms. It is known that every eigenform is
either in the p-old space or in the p-new space.

Our goal here is to understand what this structure can tell us about the slopes
of eigenforms. For the p-new part, the answer turns out to be very simple:

Theorem 8.1. The slope of a p-new eigenform of weight k on T'1(N) N To(p) is
always (k —2)/2. More specifically, if € is the nebentypus character of f and a, is
the eigenvalue for U,, we have ag = e(p)pF—2.

The proof can be found in the standard accounts of the theory of newforms;
for example, see [91, Theorem 3]. An important consequence for the application
we want to make is the contrapositive: if the slope of f is not (k — 2)/2, then f
must be p-old.

From our point of view, this tells us that all p-newforms have the same slope:
(k — 2)/2. The situation for p-oldforms is very different, and in some ways much
more interesting.

To understand what happens, consider an eigenform f € S(I'1 (IV),C,), and let
ap be the eigenvalue of f under the action of the p-th Hecke operator T,,. As above,
f has two images, i, f and v, f, in the bigger space S (1 (N)NTo(p),Cp). If £ # p,
both i, f and v, f are also eigenforms under the action of the /-th Hecke operator,
and the eigenvalue is the same as the one for f. What we need to analyze, then,
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is the action of U,. This is easy to work out. As before, let € be the nebentypus
character of f (a Dirichlet character modulo N, therefore). Then we have

Up(ipf) = apipf — €(p)pk_lvpf
Up(vpf) =ipf

In other words, the two-dimensional subspace spanned by ¢,f and v,f is stable
under U, which acts as the matrix

(—e(z?ﬂ»kl 3) ‘

The characteristic polynomial of U, is then t* — a,t + €(p)p
Suppose that there are two distinct roots of this polynomial, A; and A2. Then
we can construct two eigenforms

fl = Z.pf - >‘2Upf

fo=ipf —Mvpf,
And then we will have U, fi = A1 fi1 and Upfa = Aafa. Notice that f; and f» are
still eigenforms for all the other Hecke operators, with the same eigenvalues as f.
In this situation, we call f; and fy twin eigenforms.

What can we say about the slopes of f; and f3? Well, we know that A\ Ay =
e(p)p*~1, so we know that

k—1

slope(f1) + slope(f2) = k — 1.

We can, and do, pick the indices so that slope(f;) < slope(f2). In addition, we know
that A1 + A2 = ap, from which we can conclude that one of two things happen:

e if ord,(ap) < (k — 1)/2, then we have slope(fi) = ord,(a,) and slope(f2) =

k—1—ordy(ap);

e if ordy(a,) > (k —1)/2, then we have slope(f1) = slope(f2) = (k —1)/2.

In particular, we have
0 < slope(f1) <slope(fs) <k —1.

All of this depends on assuming that A; # A2. If there were only one eigenvalue,
then U, would not be diagonalizable on the two-dimensional subspace spanned by
ipf and v, f. Notice that this would imply that a, = 2A; and hence ordp(a,) =
(k—1)/2 (unless p = 2, in which case we would have ord,(a,) = (k + 1)/2). The
conjecture is that this cannot happen:

Conjecture (Ulmer). The action of U, on Si(I'1(N) NTy(p),C,) is semisimple.
In particular, we always have A\; # As.

This has been proved for the case of forms of weight ¥ = 2 on ['((Np) by
Coleman and Edixhoven in [30]. Under the assumption that the Tate Conjecture
is true, they show that in fact it is true for all weights & > 2. Ulmer has shown a
different conditional result in [153]: the case k = 3 follows from the conjecture of
Birch and Swinnerton-Dyer for elliptic curves over function fields.

Experimentally, the conjecture certainly seems to hold. In computations for
the case N = 1, small primes p < 100 and small weights & < 100, we always find
that
k-1

d
or P(ap) < 2
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In fact, we “almost always” find that a much stronger inequality holds, namely that
k-1

p+1’

where by “almost always” we mean that the number of counterexamples seems to
be quite small. We will discuss these computations in a forthcoming paper.

Every p-old eigenform must arise in this way from an eigenform in level N. The
upshot, then, is that p-oldforms usually (if we assume Ulmer’s conjecture, always)
come in twin pairs f; and f» whose slopes add up to & — 1. These twin forms have
the same eigenvalues under all the Hecke operators except for U,. In particular,
since the Galois representation is determined by the eigenvalues of the T, with
£t Np, the Galois representations attached to fi and to f» (or, for that matter,
to f) are exactly the same. It is this fact, that a single representation can “come
from” forms of different slopes, that will fuel the construction of the “infinite fern”
in the deformation space.

ordy(a,) <

p-adic families of modular forms

The final ingredient in our witches’ brew is Coleman’s theorem on p-adic families of
modular forms. To state a version of this theorem, suppose that we start with an
eigenform f € Sy, (T'1(N)NTy(p),Z,) (note that now we are asking for coefficients
in Z,!) and suppose that the slope of f is not equal to ky — 1. Coleman has
proved (see [26] and [28]) that any such eigenform fits into a one-parameter p-adic
analytic family of overconvergent p-adic modular forms with Fourier coefficients in
Z, which are eigenforms for T, for all £ # p and for U,, have constant slope «,
are all congruent modulo p, and where the “one parameter” is given by the weight.
Furthermore, he has shown in [26] that the forms in this family corresponding to
weights that are rational integers bigger than « + 1 are classical modular forms;
this, of course, is Coleman’s generalization of Hida’s “control theorem” for ordinary
modular forms. (For an expository formulation of some of these results of Coleman,
see [100].)
One can think of this analytic family as a family of g-expansions

fe =q+ax(k)@® +asz(k)g® + ...,

where each of the a, (k) is an analytic function of k and where specialization to the
original weight kg gives the form from which we started. Since each fj, is an (p-adic)
eigenform, there is an associated representation pg; since the f; are all congruent
modulo p, these p;, are all deformations of the residual representation attached to
our original form. Hence, Coleman’s theorem gives us a “p-adic analytic curve” in
the deformation space, consisting of representations all of which are attached to
forms of slope a.

Infinite ferns

We now focus on the special case we want to study more closely. Let N = 1
and assume p is an absolutely irreducible representation coming from a (classical)
modular form f of weight k¥ and level 1 with coefficients in Z,. As above, we can
think of f as an oldform on I'g(p). Take S = {p,o0}, and A = Z,. Let R(p) be

the universal deformation ring and (as before) let R,,(f) be the completion of the
big p-adic Hecke algebra at the maximal ideal corresponding to f. We assume
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that the deformation problem is unobstructed, so that in particular we have
R(p) =2 Zp[[T1,T>,T3]]- Let X be the universal deformation space, which is just the
“cube” pZp, x pZ, X pZp, thought of as a p-adic analytic space. Let X be the “Sen
null subspace” which we discussed in the previous lecture, i.e., the subspace of X
corresponding to representations one of whose Sen weights is zero. As we pointed
out above, Xy is a analytic subspace of X of dimension two.

Let B! be the rigid-analytic closed unit ball over Q,, so that B (Q,) = Z.
Here is the version of Coleman’s theorem which we will use:

Theorem 8.2 (Coleman). Let f be an eigenform of level p and weight ko and let
x € X(Qp) be the point such that the representation p, is attached to f. Suppose
the p-adic valuation of the eigenvalue of U, acting on f is not equal to ko—1. Then
there exists an open neighborhood D C B! of ko € Z C Z, = B'(Q,), and a p-adic
analytic mapping

z:D— XogCX

of D to the subspace Xy of the p-adic analytic manifold X, and a p-adic analytic
function

w: D — B*,
such that, for an arithmetic progression of (positive, rational) integers X C D
which is topologically dense in D, the image of each k € X under the mapping z

is a point z(k) whose associated representation is the representation attached to a
modular eigenform f. of level p, weight k, and Up-eigenvalue equal to u(x). Finally,

fno:f'

The crucial point is that the family depends not only on the representation we
start with, but also on the slope of the modular form attached to that representa-
tion. As a result, when the Galois representation p is attached (in the above sense)
to a pair of “twins,” it follows that there exist two distinct one-parameter families
of deformations of p. This is what allows us to construct the structures Mazur and
I call “infinite ferns” in the deformation space of p.

Let I' C Z, denote the group of 1-units in Z, i.e., the multiplicative group of
p-adic integers congruent to 1 mod p. Twisting the representation p, corresponding
to a point # € X (Q,) by a one-dimensional “wild” character ¢ : Gg (3 — T,

Pz = Y Q@ pa,
induces a p-adic analytic action of the group of wild characters (i.e., the formal
group in one parameter, call it ¥ = Hom.,,.(Gg,{p},')) on the p-adic manifold X.
For a very brief discussion of this action, see §5 of [100]. Let us denote the point
of X which corresponds to the representation ¢ ® p, by ¢ o x.

As noted above, X contains the p-adic analytic “surface” Xo. This space is
“essentially transversal” to the action of ¥ on X, in the sense that the natural
mapping

m: Xogx ¥ — X

(1'0,1/1) = 1/10930

IWell, really X = Spf(R(p))"& is the open unit rigid-analytic 3-ball over Q,. The “cube” is
actually X (Qp), i.e., it consists of the points in X that are defined over Q. All the points in the
“infinite fern” we are about to construct are in fact defined over (p, so the mental image of the
“cube” is not too misleading.
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has fibers of cardinality < 2 (in fact, 7 is the restriction to Xo X ¥ of a mapping of
degree 2 on analytic spaces) and 7 is unramified off the locus Xgo X ¥ C X x U,
where X is the analytic subset of X whose @Q,-points z are those for which the
Hodge-Tate-Sen weights of the associated representation p, are {0,0} (cf. the main
proposition of §8 in [100]).
We need one further assumption before we can proceed:
We assume the slope of the modular form f is not equal to 0
or to k— 1.

Note that forms of slope 0 always come in twin pairs with forms of slope k — 1, so
that it makes sense to assume both of those together. We call forms whose slope is
0 or k — 1 “forms of critical slope;” thus, our assumption is that f is of non-critical
slope.?

Given that whole setup, we do the following.

e To begin with, we have a modular residual representation whose associated
modular form f = fy is of weight k = kg and slope ag not equal to 0 or kg —1.

e Use Coleman’s theorem to produce a curve of deformations containing foy,
each attached to a modular form of some weight and slope ag. (This might
be the curve C in the picture.)

e If the initial form is not a newform, then it has a twin, and we can construct
a curve corresponding to that twin. It goes through the same initial point,
since twin forms give the same representation, but it corresponds to forms of
weight ko — 1 — ag. (If the first curve is C, this is C'(%).)

e “Move” along either of the families to a classical form f; of weight k; and
slope ag. Make sure ky > ag + 1, k1 # 2a9 + 1, and k; # 209 + 2. Notice
that there are infinitely many integers k; with these properties. In fact, the
set of such integers is dense in Z,,.

e The last inequality means that f; is p-old, so it has a twin f; of weight k;
and slope ay = k; — 1 — ap. Notice that ay # 0,k — 1, ap. (This is where we
need to know that the initial form did not have critical slope.)

e Now repeat the process starting from f;. In fact, repeat this at all points
that satisfy the weight-slope constraints.

This produces an amazingly complex structure, which we call an “infinite fern,”
made up of infinitely many analytic arcs, all contained in Xy. (See figure 1 and
the discussion in §18 of [100].) In the diagram, each curve segment corresponds
to a modular arc in Xy, which is an embedded p-adic analytic image of a disk in
Zp. For a topologically dense set of the points k on any given modular arc C' there
is another arc C'¥) crossing C' at k. More pictorially, calling any given modular
arc a “spine” and calling the modular arcs crossing it “needles,” we have that each
“spine” has a topologically dense set of “needles.”

In fact, not only do we get an infinite fern growing around our initial point, but
also we see that every modular form satisfying our constraints which is congruent
to f corresponds to a point in Xy which has a topological neighborhood containing
the image of an infinite fern. This structure “fills up” the subvariety Xy, and we
can “thicken it” by considering all possible twists of the whole structure. This

2This is actually a minor assumption: if our initial form happens to have slope 0, we can replace
it by another form of non-zero slope which produces the same residual representation, at the cost
of enlarging the base ring over which we are working, using the trick given on page 111 of [57]
(but note that this forces us to move from Z, to some ramified extension).
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Figure 1. An infinite fern

gives a structure that is sufficiently “big” to prove that the modular points must be
Zariski-dense in the full deformation space. Using this, we can prove the following
result:

Proposition 8.3. Suppose p is absolutely irreducible, unramified outside p and in-
finity, and attached to a (classical) modular form on T'g(p) of non-critical slope and
with Fourier coefficients in Z,. Suppose also that the deformation problem associ-

ated to p is unobstructed. Then the map R(p) — R(f) given by the deformation
theory is an isomorphism.

It is possible that a similar approach will work whenever we know the dimension
(perhaps even the local dimension?) of the deformation space.

In the case where the residual representation comes from an ordinary modu-
lar form, another approach to theorems of this sort seems plausible: one can use
Wiles” methods to show that all ordinary deformations are modular, and then use
Bockle’s results (in [5]) on the relation between the ordinary deformation space and
the full deformation space to compare the full deformation space to the modular
deformation space. Bockle has recently announced a result along these lines.



APPENDIX 1

A criterion for existence of a universal deformation ring
by Mark Dickinson

The purpose of this note is to give an elementary proof of the existence of
the universal deformation ring, using a representability criterion of Grothendieck.
In particular the proof makes no use of Schlessinger’s criteria or of noetherian
hypotheses. I would like to thank Brian Conrad for suggesting that this be written
up and Fernando Gouvéa for allowing me to include it here. I would also like to
thank Sam Williams for helpful comments.

Let k£ be a field and let A be a topological ring which is the inverse limit of
a system of artinian local rings, each with the discrete topology and with residue
field k. (For example let k be finite and A the ring of Witt vectors of k.) We
define two full subcategories of the category of topological A-algebras R. Let &1
be the full subcategory whose objects are discrete finite-length local A-algebras R
for which the structure map induces an isomorphism on residue fields, and define
% to be the full subcategory whose objects are those arising as an inverse limit
of objects of #i. (The objects of %) are examples of ‘pseudo-compact’ rings; for
basic properties of these rings see section 0 of [56].)

Now let G be a profinite group, d a positive integer and p: G — GL4(k) a
continuous representation of G. Assume that the only matrices in My (k) which
commute with every element of the image of g are the scalar matrices.

Definition 9.1. A lifting of p (to R) is a pair (R, p) consisting of an object R of €
together with a continuous representation p: G — GLg4(R) whose pushforward by
the natural reduction map R — k is conjugate to p. Two liftings (R, p) and (R, o)
of p to the same ring are conjugate if the representations p and o are conjugate. A
deformation of p to R is a conjugacy class of liftings of p to R; the notation (R, p)
will also be used for the deformation represented by a lifting (R, p).

Note that, if we assume C'(p) = k, the conjugating matrix relating two (conju-
gate) representations (R, p) and (R, o) lifting p can be chosen to be congruent to
the identity modulo the maximal ideal of R.

If (R,p) is a deformation of g and ¢: R — S is a morphism of % then the
pushforward (S, ¢.p) of (R,p) by ¢ is a deformation of p to S. Thus there is a
well-defined functor

Def: €5, — Sets
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which sends an object R of 4 to the set of deformations of p to R. Suppose that
certain deformations of p are designated ‘of type &’, and that the pushforward of
a deformation (R, p) of type & by a morphism ¢: R — S is again of type &. Then
one can define a subfunctor

Def »: €p — Sets
of Def which sends an object R to the set of deformations of p to R of type &.
Definition 9.2. We define a universal deformation of p of type & to be a defor-

mation (R, pUV) of p of type & such that for any given deformation (R, p) of
p of type & there is a unique morphism ¢: R%ﬁ" — R for which the pushforward

of (RS, pUlV) by ¢ is equal to (R, p).

By the Yoneda Lemma, to give such a universal deformation is equivalent to
giving an object R of €, along with an isomorphism

Homg, (RY'Y, —) = Def »

of functors; thus a universal deformation of g of type & exists if and only if the
functor Def » is representable. We call the object RL“;‘iV a universal deformation
ring for deformations of p of type &. The following theorem tells us when we can
expect a universal deformation of type & to exist.

Theorem 9.1. The following three conditions are necessary and sufficient for the
ezistence of a universal deformation of p of type &:

e the trivial deformation (k,p) of p is of type &,

e given a diagram R L T < S in €L, any deformation of p to the fiber
product R X1 S whose pushforwards to R and to S are both of type & is itself
of type &, and

e if R in €y is a filtered limit of objects (R;)ic.s of € and the pushforward of
a deformation (R, p) by the natural reduction map R — R; is of type & for
each i, then (R, p) is of type 2.

Note especially that in the case where every deformation of g is of type &
the conditions of the theorem are trivially satisfied and so a universal deformation
exists.

To prove the theorem, we first give Grothendieck’s criterion for a set-valued
covariant functor on %, to be representable. Recall that a functor is called left
exact if it is compatible with the formation of finite limits and that being left exact
is equivalent to taking terminal objects (resp., fiber products) to terminal objects
(resp., fiber products).

Proposition 9.2. A functor X: €y — Sets is representable if and only if the
restriction of X to € is left exact and X preserves filtered limits, taken in €y, of
objects of €1

Proof. First note that the functor which sends an object R of € to the system
of finite-length discrete quotients of R gives an equivalence of categories between
the category % and the category of pro-objects of €1, as defined in section A2 of
[67]. By the corollary to Proposition 3.1 of section A of [67] there is an object R
of €5 and an isomorphism Homg, (R, —) = X of functors on %4 if and only if the
restriction of X to ‘Kj{i is left exact. This isomorphism extends to an isomorphism
of functors on %, if and only if X preserves filtered limits of objects of €. |
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So in order to prove Theorem 9.1 it is enough to check that the functor Def »
satisfies the hypotheses of Proposition 9.2. We first prove that the full deformation
functor Def: ¥y — Sets satisfies these hypotheses. We begin with the following
easy consequence of the fact that the centralizer of the image of § is the scalar
matrices.

Lemma 9.3. Let W be a subspace of a finite-dimensional k-vector space V, and B
a d X d matriz with entries in V. If Bp(g) — p(g)B has entries in W for all g in G,
then B = vl + C for some element v of V and a matriz C all of whose entries lie
n W.

Proof. Take a basis {e1,...,e.} of W over k and extend it to a basis {e1,...,es}
of V. Write B as y.;_, Bie; where each B; is an element of My(k). Then for
r < i < s the matrix B; commutes with each element of the image of p and hence
is a scalar matrix. O

Lemma 9.4. Suppose that R is an object of €5 and (R, p) is a lifting of p. Then
any element of My(R) which centralizes the image of p is a scalar matriz.

Proof. Since R is a local artinian ring the nth power of the maximal ideal mp
of R is trivial for some n > 1; we prove the result by induction on n. For n =1
the result is immediate, since we assumed that only the scalar matrices in My(k)
centralize the image of p. Suppose that n > 1 and that A is an element of M4(R
such that Ap = pA. By the induction hypothesis the reduction of A modulo m’f{l
is a scalar matrix and we can write A = A + B for some element A of R and
some matrix B with entries in the finite-dimensional k-vector space m’~'. Then
(M + B)p = p(M + B) and so Bp — pB = 0. Since B has entries killed by mp, we
can rewrite this equation as Bp — pB = 0. So B is a scalar matrix by Lemma 9.3,
hence so is A = Al + B. O

Lemma 9.5. The functor
Def: €5, — Sets

which sends an object R of € to the set of deformations of p over R is representable.

Proof. By Proposition 9.2 we need to show that Def preserves filtered limits of
objects of €} and that Def restricted to €} is left exact. To show the former
requires, not surprisingly, an application of Zorn’s Lemma. Let R be the filtered
limit of a system (R;);c.» of objects and maps of #f! indexed by a set .# and suppose
that for each i € .4 we are given a deformation (R;,p;) of p and that for every
morphism i — j of .# the pushforward of (R;, p;) by the corresponding map R; —
R; is equal to (Rj, p;). We must show that there is a unique deformation (R, p)
whose pushforward by each natural projection map R — R; is equal to (R;, p;)-
For each object i of .# let S; be the set of liftings of p to R; which represent (R;, p;)
and which reduce to g, and consider the system of subsets of \S; consisting of the
orbits of subgroups of GL4(R;) of the form I+ My(J) for some proper ideal J of R;.
Using these subsets we can apply Theorem 1 of section 7.4 of Chapter 3 of [12] to
deduce that the inverse limit over ¢ in & of the sets S; is non-empty, hence that
there is a deformation (R, p) as desired. To show that this deformation is unique,
suppose that (R, o) is another such and that for every object i of .# there is a
matrix A;, unique up to scalar multiplication by Lemma 9.4, which conjugates the
pushforward to R; of p to the pushforward of o. If we assume that both p and o



108 F. Q. GOUVEA, GALOIS DEFORMATIONS

reduce to p then it follows from the triviality of the centralizer of the image of p
that each A; reduces to a scalar matrix. Thus we may assume that the top left
entry of A; is equal to 1 for each i in .#; then the A; form a compatible system of
matrices and so give a matrix A with entries in R which conjugates p to o.

To check that Def is left exact on €} it suffices to check that it preserves fiber
products and the terminal object. The only deformation of g to k is (k, p) itself, so
Def (k) is a one point set and Def preserves the terminal object. It remains to show
that Def preserves fiber products in %1{1. Suppose that we have a fiber product

RXTS—>R

Lk

S—T

of objects of ¥}, and suppose that (R, p) and (S, o) are liftings of p whose push-
forwards (T, ¢.p) and (T,v.0) are conjugate. We will show that it is possible to
replace (R, p) and (S, o) with conjugate liftings whose pushforwards to T are iden-
tical. Then we obtain a lifting (R X1 S, 7) of p whose pushforwards to R and S are
conjugate to (R, p) and (S, o) respectively; a similar argument to the one above for
filtered limits shows that if this lifting exists then it is unique up to conjugation.

We suppose that the nth power of the maximal ideal my of T is zero and prove
the existence of m as above by induction on n. We may assume that p and o each
reduce to p (rather than just to a conjugate of p), and in the case n = 1 there is
nothing more to do; now suppose that n > 1 and that

-1
¢«p = oo modulo mi

By assumption there is a matrix C' in GLy4(T) such that C.0C~! = ¢.p. The
reduction of C' modulo m’{fl centralizes the image of the reduction of the represen-

tation .o modulo m%_l so is a scalar matrix by Lemma 9.4. So without loss of
generality we may assume that C' = I + L for some matrix L with entries in mg_l.

Now
(I + Lypuo(I = L) = 6up
and since L is annihilated by m7 we can rewrite this as
Lp — pL = ¢up — 0.
From Lemma 9.3 it follows that L = A\ +¢(M) —1)(N) for some element A of m7.
and for some matrices M and N with entries in R and S respectively; by replacing
M and N by M — P and N + P for some P in M4(A) lifting the reduction of
M to My(k) we may assume that M and N have entries in the maximal ideals
mp and mg of R and S. Then ¢(M)(¢p(M) — ¢(N)) = 0 and it follows that
I+L=(1+AI-¢(M))~1(I —4(N)) and hence that
(I = N)o(I = N)™) = 6.((I = M)p(I = M)™")

thus giving conjugates of p and ¢ whose pushforwards to 7" are identical, as required.
O

Proof of Theorem 9.1. The proof of Theorem 9.1 now follows easily: Def is left
exact and preserves filtered limits by Lemma 9.5 and Proposition 9.2. Now the first
two conditions in the statement of the theorem assert that the subfunctor Def » of
Def is left exact on €f! and the third that Def » preserves filtered limits of objects
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of ¥f. So by Proposition 9.2 again the functor Def » is representable (equivalently,
a universal deformation of p of type & exists) if and only if the conditions of the
theorem are satisfied. O

To end we note that Grothendieck’s results also yield a criterion for the univer-
sal deformation ring to be noetherian. Let k[¢] denote the object k[X]/(X?) of &1
(where £ corresponds to the image of X). It is a k-vector space object of the cat-
egory €1, with addition k[e] x, k[e] — k[e] defined by sending (ae, be) to (a + b)e
and scalar multiplication by a defined by sending be to abe. For any left exact
functor X : €f! — Sets, these maps provide the set X (k[e]) with the structure of a
k-vector space, and for any natural transformation of left-exact functors a: X — Y
the map ay.: X (k[e]) — Y(k[e]) is k-linear. In particular if the deformation func-
tor Def » is representable then Def »(k[e]) is a k-vector space and is isomorphic to
Homg, (RS, k[e]).

Proposition 9.6. Suppose that A is noetherian and that the functor Def » sat-
isfies the conditions of Theorem 9.1 and so is representable. Then the universal
deformation ring R is noetherian if and only if the k-vector space Def;(k[s])
is finite-dimensional; furthermore, if Def »(k[e]) has dimension d then RS is a
quotient of the power-series ring A[[ X1, ..., X4

Proof. This follows from Proposition 5.1 of section A of [67]. O

MARK DICKINSON
DEPARTMENT OF MATHEMATICS
HARVARD UNIVERSITY
CAMBRIDGE, MA 02138
dickinso@math.harvard.edu






APPENDIX 2

An overview of a theorem of Flach
by Tom Weston

In recent years, the study of the deformation theory of Galois representations
has become of central importance in arithmetic algebraic geometry. The most fun-
damental question in this field is the explicit determination of universal deformation
rings associated to given residual representations. It was observed by Mazur in his
first paper [97, Section 1.6] on the subject that the solution of this problem is imme-
diate if a certain Galois cohomology group associated to the residual representation
vanishes.

The goal of this appendix is to provide an overview of a theorem of Flach
which yields the vanishing of this cohomology group for many mod [ representations
coming from rational elliptic curves. We do not seek to give a complete proof; we
hope only to make clear the main ideas. In the process we will touch on many
facets of arithmetic algebraic geometry, including Tate’s duality theorems in Galois
cohomology, generalized Selmer groups, Kolyvagin’s theory of Euler systems and
the geometry of modular curves.

The work we will describe actually has another, more direct, application: it can
be used in many cases to prove the Taylor-Wiles isomorphism between a certain
universal deformation ring and a certain Hecke algebra. We will not touch on this
aspect; for details, see [99] or [158].

We have tried to keep the prerequisites to a minimum. The main requirement
is a good familiarity with Galois cohomology. The algebraic geometry we use is
mostly at the level of [146, Chapters 1 and 2], with the exception of Appendix
B, which is significantly more advanced. Some familiarity with elliptic curves is
helpful, although with the exception of Appendix A we will use little more than
the Tate module and the existence of the Weil pairing.

I would like to thank Brian Conrad, Matthew Emerton and Karl Rubin for
teaching me much of the material presented here. I would also like to thank Fer-
nando Gouvéa for encouraging the writing of this paper. Above all, I would like
to thank Barry Mazur for his constant help and insights; I can only hope that his
point of view is visible in the mathematics below.
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Unobstructed deformation problems

Let Gq,s be the maximal quotient of the absolute Galois group of QQ unramified away
from a finite set of places S. Let [ be a prime number and let p: Gg,.¢ = GL2(F;)
be a Galois representation. Under certain additional hypotheses (for example, if
p is absolutely irreducible) we can associate a universal deformation ring R(p) to
such a residual representation; see Lecture 3 in these notes, and [97] or [101] for
details.

In general the determination of the structure of the ring R(p) is quite difficult.
However, in at least one case the determination is easy: let ad(p) be the Gg,s-
module of 2 x 2 matrices over F; on which v € Gg s acts via conjugation by p(7).
If

H*(Go,s,ad(p)) =0,

then R(p) is isomorphic to a power series ring in dimg, H' (Gg,s,ad(p)) variables
over Zp; see [97, Section 1.6, Proposition 2]. If this is the case, we say that the
deformation problem for p is unobstructed.

Our goal in this paper is to explain the main ideas of the proof of the following
theorem of Flach (this is [50, Theorem 2]).

Theorem 10.1. Let E be an elliptic curve over Q, let 1 > 5 be a prime and let S
be the set of places of Q at which E has bad reduction, together with | and co. Let
p: Go,s = GLa(Z;) be the representation of Gg,s on the l-adic Tate module of E
and let p: Go,s = GL2(IF;) be the residual representation. Assume further that:
E has good reduction at [;

p 18 surjective;

For all p € S — {00}, E[l] ® E[l] has no Gg,-invariants;

I does not divide the rational number L(Sym?® Ty E,0)/Q, where Sym® T} E is
the symmetric square of the l-adic Tate module of E and Q) is a certain period.

Then the deformation problem for p is unobstructed.

In Appendix A we discuss precisely how stringent these hypotheses are; the
main result is that for fixed £ which does not have complex multiplication, then
they are satisfied for a set of primes [ of density 1. We will explain the fourth
hypothesis in Section 5.

We should note that this theorem uses in a crucial way the fact that E is
modular, and thus stating it in the form above relies heavily on the recent proof of
the Shimura-Taniyama conjecture.

Galois modules and the calculus of Tate twists

We begin with some formalities on Galois actions and certain commutative algebra
operations. Let S be a finite set of places of Q including the prime [. Let M and N
be Z;-modules with Gg,s-actions. We make the tensor product M ®z, N a Gg,s-
module via the diagonal action: y(m ® n) = ym ® yn. We make Homgz, (M, N) a
Go,s-module via the adjoint action: yf(m) = v - f(y~'m) for f € Homgz,(M, N).
Note that the Gg, s-invariants of Homz, (M, N) are precisely the G s-equivariant
homomorphisms Homg, g, ,(M, N). Throughout this paper we assume that the
base ring for any of these constructions is Z;; we will usually omit it from the
notation.
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Now assume that M is free over Z; of rank 2. We define the symmetric square
Sym? M of M to be the submodule of M ® M which is invariant under the auto-
morphism of M ® M interchanging the two factors. If x,y is a basis for M, then
TR, rRY+yRx, Y@y is a basis for Sym? M, so that Sym? M is free over Z; of rank
3. In fact, if I # 2, then Sym? M is a direct summand of M ® M; the complimentary
summand is the alternating square A2M, which has basis z ® y — y ® :

(1) M ® M = A>M & Sym? M.

One checks easily that Sym? M is stable under the action of Gq,s, so that
it can also be considered as a Gg,s-module. We also have an induced action of
Go,s on A>M, and with these actions the decomposition (1) is a decomposition of
Gg,s-modules.

The module of endomorphisms End(M) admits a similar decomposition if £ #
2. (As always we let Gg,s act on End(M) via the adjoint action.) The scalar
matrices in End(M) are a free Z;-module of rank 1 with trivial Galois action, since
conjugation is trivial on scalars. Thus, for £ # 2 we have a canonical decomposition

End(M) = Z; ® End®(M)

where End’ (M) denotes the trace zero matrices in End(M) and the first summand
corresponds to the scalar matrices. (We always take Z, itself to have trivial Gg,s-
action.)

Now let E be a rational elliptic curve (i.e., an elliptic curve defined over Q),
and let [ be an odd prime. Recall that the [-adic Tate module of E is the free
Z;-module of rank 2 defined by

T.E =1lim E[I"].

If S is any set of places of Q including ! and the places where E has bad reduction,
then T} E carries a natural action of Gg,s. Upon choosing a basis for T} E we can
view this as a representation

p: GQ — GL2(Z[).

The Galois module which will actually prove most relevant to the proof of Theo-
rem 10.1 is the symmetric square of T} F.

We can perform a similar construction with the I-power roots of unity: this
Tate module, im i, is written as Z;(1). Thus Z(1) is a free Z;-module of rank
1 on which Ggq,s acts via the f-adic cyclotomic character

€. GQS — Z;‘;

here S is any set of places of Q containing | and co. For any n > 0, define Z(n) to
be the tensor product (over Z;) of Z;(1) with itself n times. Define Z;(—1) to be the
integral Pontrjagin dual Hom(Z(1),7Z;) of Z;(1), and define Z;(—n) as the tensor
product of Z;(—1) with itself n times. Thus Z;(n) is a free Z;-module of rank one
on which Gg,s acts via e™. If M is any Z;-module with an action of Gg, we define
its n*® Tate twist by
M(n) = M ®z, Zi(n).

M (n) is isomorphic to M as a Z;module, but they usually have different Gg-
actions.

A key property of the Tate module of an elliptic curve is that the Weil pairings

E[I" ® E[I"] =
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compile to yield a perfect, skew-symmetric, Galois equivariant pairing
e:TIEQTE — Z(1).

See [146, Proposition II1.8.3]. Since e is skew-symmetric, this implies that A2T} E =
Z;(1). We record some additional consequences below.

Lemma 10.2. The Weil pairing induces a Galois equivariant isomorphism
End(T}E)(1) 2 T)E @ T)E.

This isomorphism restricts to an isomorphism
End’(T,E)(1) = Sym®> T,E

of direct summands.

Proof. The Weil pairing yields a duality isomorphism
T,E = Hom(T} E, Zy(1)),

essentially by the definition of a perfect pairing. Galois equivariance of the Weil
pairing implies precisely that this identification respects Galois action, thanks to the
definition of the adjoint Galois action. Tensoring with 77 F now yields the first state-
ment of the lemma, since Hom(T;E, T} E(1)) is visibly isomorphic to End(T;E)(1).

Explicitly, the above isomorphism sends t ® t' € T)E ® T;FE to the function
t'®e(t,-) € Hom(T,E,T)E ® Z(1)). To check the second statement, we can ignore
Galois actions and we simply have to check that symmetric elements of T} E @ T} E
correspond to trace zero matrices in End(7;E). This follows immediately from the
fact that the Weil pairing is alternating; we leave it as an exercise. O

If M is any finite free Z;-module with an action of G s, we define its integral
Cartier dual M* to be the Gg,s-module Hom (M, Z;(1)). (Often the term Cartier
dual is used for the module Hom (M, Q; /Z(1)).)

Lemma 10.3. The Weil pairing induces an isomorphism
(E @ TE)* 2 T\E @ T,E(-1).
This isomorphism restricts to an isomorphism
(Sym® TiE)* = (Sym® T1E)(-1).

Proof. In general, if A and B are any free Z;-modules with Gg s-actions, then
(A® B)* 2 A* ® B*(—1), as one checks easily from the definition. In our case, the
Weil pairing shows that (T;E)* = T;E, and the first statement follows. The second
statement is immediate once the first isomorphism has been made explicit; we omit
the details. O

First reductions

In this section we will use various global duality theorems of Tate to reduce our
calculation of H?>(Gg,s,ad(p)) to the vanishing of a certain Shafarevich-Tate group.
For the remainder of the paper we fix a rational elliptic curve E and a prime
[ satisfying the hypotheses of Theorem 10.1. Let S be the corresponding set of
places of Q. Note that as Galois modules ad(p) = End(E[l]); we will use the
notation End(E[l]) from now on.
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We begin with the following small piece of the Poitou-Tate exact sequence (see
[156, Section 8] for statements and [107, Chapter 1, Section 4] for a proof; here we
are using the fact that [ # 2 to eliminate the terms at infinity):

[[ B%Q,El® EN) - Hom(H?(Go,s, (E[l] ® EI)*), Z/1Z) —
p€S—{co}
H'(Go,s, Elll ® E[l) » [ HY(Q,, E[] ® ENI)).
peS
Tensoring the first isomorphism of Lemma 10.2 with Z/IZ yields an isomor-
phism
E[l] ® E[l] =2 End(E[I])(1).
Together with Lemma 10.3, this implies that
(E[ll® E[l)* = End(E[l]).

Thus the above exact sequence contains a term which is the dual vector space to
H?(Gg,s, End(E[l])); since to prove Theorem 10.1 we need to show that this group
vanishes, we see that it will suffice to show that the two groups

I B@Q, ENeER)

pES—{oo}

I (Go.s, Ell] ® E)) = ker | H'(Go,s, BW] © B[) - [ H'(Q,, B[l © EW)
peES
both vanish.
The vanishing of the first of these groups is the third hypothesis in the statement
of Theorem 10.1. For the second, we first write

E[ll ® E[l] = A*E[l] ® Sym® E[I] 2 1; ® Sym? E[1].
(The isomorphism of A?E[l] and p; comes from the Weil pairing.) One sees imme-
diately from this that there is a corresponding decomposition
II' (Go.s, E[l] ® E[l)) = IT'(Go,s, ) @ II' (Gq,s, Sym” E[l]).

The first term is easily dealt with. We will need the following results, which will
also be useful later when dealing with Selmer groups.

Lemma 10.4. Let A be a Gg-module which is unramified away from a finite set
of primes S. Then

H'(Go,s,4) = ker | H(Q 4) —» [[ H'(Z,, 4)
pES
Here I, C G is the inertia group at p.

Proof. See [156, Proposition 6] for a proof. The idea is simply that cohomology
classes for Gg,s are automatically unramified away from S and therefore are trivial
when restricted to the corresponding inertia groups. |

Lemma 10.5. Let p be a prime different from |. Then the mazimal pro-l quotient
of the inertia group I, is isomorphic to Z; as a topological group. If Gg, is made
to act on I, by conjugation, then the mazimal pro-l quotient of I, is isomorphic to
Zy(1) as a Gg,-module.
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Proof. Recall that I, = Gal(Q,/Q:"). It is shown in [54, Section 8, Corollary 3]
that the maximal pro-I quotient of this group is Gal(Q}" (p'/*")/ @,"). This is seen
to be isomorphic to Z;(1) using the isomorphisms

Gal(Qy* (p™/"")/Qp7) = lim Gal(Qy* (p"/"")/Q7) = lim puen 2= Zy(1).
We leave the verification that the conjugation action of Gg, is cyclotomic as an
exercise. 0

Lemma 10.6. I1I' (Gg,s, 1) = 0.
Proof. By definition,

' (Gg,s, ) = ker | H'(Go,s,m) = [ B (Qy, )
peES

Lemma 10.4 shows that we can rewrite this as

T (Go,s, ) = ker | HY(Q, ) = [] B (I, ) x [ B (Qp, 1)
p¢S peS

We will compute these groups.
We begin by working in some generality. Let K be any perfect field of charac-
teristic different from [, and consider the exact sequence

0= m— K LK >0
of G'x-modules. Hilbert’s theorem 90 (see [140, Chapter IL.1, Proposition 1]) says
that H! (K, K*) = 0, so the long exact sequence in G k-cohomology coming from
the short exact sequence above yields an isomorphism
K* @7 /172 0 (K, ).
This applies in particular to the fields Q,:

Q, ®zZ]IL= H'(Qp, ).

For p ¢ S we also need to compute H' (I, 117). Since p ¢ S, we know that p # [; thus
I, acts trivially on py. Thus H'(I,, ;) = Hom(I,, sy). Any such homomorphism
must factor through the maximal pro-/ quotient of I, and now Lemma 10.5 shows
that this group is just u,. It is easily checked that the restriction map

H' (Qp, 1) — H' (I, ) = Hom (g, pe) = 7. )17
is just the natural map
Q ®z2Z/12= (L xL,)®zL[IZ— ZL[IZ
which is trivial on Z; that is, it is the p-adic valuation map modulo /.
The group ITT* (Gg,s, i) is therefore the kernel of the map

Q @z2/1Z.— [[2/1zx ] @ ®z7/i%.
pES p€S—{oc}
(Since [ # 2 the term at oo vanishes.) Our calculations above show that this kernel
consists only of elements of Q% ®z Z /17 which have p-adic valuation divisible by [
for all primes p. (In fact, at p € S the conditions are even stronger, but we won’t
need that.) Unique factorization in Z implies that any such rational number is an
I*h-power in Q*, and therefore is zero in Q* ® Z /IZ. (Here we also need to use the
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fact that the units Z* are just £1 and disappear on tensoring with Z/IZ.) Thus
1! (Gg,s,m) = 0, as claimed. Note that the fact that Z has unit rank 0 and class
number 1 was essential to this argument. |

We have now reduced the proof of Theorem 10.1 to showing that the Shafarevich-
Tate group IT' (Gg,s, Sym?® E[l]) is trivial. We will first show that it embeds into
an a priori larger group. Before we can do this, however, we need to define the
Selmer groups of our Galois modules.

Selmer groups

Recall that the Selmer group of an elliptic curve over Q is defined to be the subgroup
of HY(Q T, E ® Q/7Z;) of cohomology classes which for all p are locally in the
image of F(Q,) under the Kummer map. (See [63].) We will be working with
Sym’T)E ® Qi /Z;, but here we no longer have any natural geometric object on
which to base our local conditions in the definition of the Selmer group. The key
to the general definition of a Selmer group is the fact that the image of the local
Kummer map consists precisely of those cohomology classes which are unramified,
in a sense which we shall make precise below.

Let us fix some notation for the remainder of the paper: set T = Sym?T}E
(a free Z;module of rank 3), V = T ®z, @ (a 3 dimensional Q-vector space)
and A = V/T = Sym® T)E ®z, Q/Z; (which is isomorphic as an abelian group to
(Q/Z1)®). T,V and A are to be regarded as three different incarnations of the
same Galois module. We will also need to consider A* = Homgz, (T, p~ ), which is
also isomorphic as an abelian group to (Q;/Z;)%. Lastly, for technical reasons we
will later need to consider the finite modules T,, = T'/I"T and A% = A*[I"] (both
of which are isomorphic to (Z/I"Z)? as abelian groups).

To formalize the notion of a Selmer group, we wish to define “unramified sub-
groups” (the usual term is finite subgroups) H}(Qp , A) of HY(Q,, A) for every prime
p. We will then define the Selmer group H}(@, A) of A by

H}(Q, A) = ker (Hl (@A) = HHI(@p’A)/H}(@p,AO

={ce H(Q A) | res,c € H}(QP,A) for all p}.

Here res,, is the restriction map from H}(Q, A) to H!(Q,, A).

The definition of H} (Qp, A) is fairly straightforward for primes p which do not
lie in S. Indeed, the most obvious notion of an unramified cocycle is one which
becomes trivial when restricted to inertia; that is, it should lie in the kernel of the
restriction map

HY(Qp, A) = HY (I, 4)
where I, is the inertia subgroup of Gg,. The inflation-restriction sequence (see
[156, Proposition 2 and the discussion following]) identifies this kernel with

H' (GQp/IpaA) =H' (Fpa A)-

(Here we are using that I, acts trivially on A to see that A is a G, /I,-module.)
We take this as our definition of the finite subgroup, at least for p ¢ S:

H}(QIHA) = Hl(FpaA)a

or more honestly its image in H!(Q,, A) under inflation.
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Note that the inflation-restriction exact sequence now takes the form
0 — H}(Qp, 4) » HY(Q,, 4) = H'(I,, A)“» — H*(E,, A).

In fact, H?(E,, A) vanishes because G, = 7; see [140, Chapter I1.3]. We will call
H'(I,, A)“* the singular quotient of H'(Q,, A) and write it as H!(Q,, A), so that
we have an exact sequence

0 — Hy(Qy,4) » H(Qy, 4) — Hy(Qy, 4) > 0.

In analogy with this definition, for p € S it might seem most reasonable to
define the finite part of H'(Q,, A) also as the kernel of H'(Q,,4) — H!(I,, A4),
which equals H!(E,, Af»). However, for reasons which will not become apparent in
this paper this definition turns out to be inadequate. It turns out that the correct
definition is as follows: first assume p # [. Let m: V' — A be the natural quotient
map. We define

H}(@pav) = Hl(]FIIHVIp)
and

H}‘(@paA) = W*H}(QP,V).
Here m, : HY(Q,,V) — H!(Q,,A) is the induced map on cohomology. Despite
appearances, W*H} (Qp, V) need not be the same as H'(E,, VI»), at least for p € S.
For later use, let us also set H} (Q,,V) = HY(E,,V) for p ¢ S. One checks easily
that in this case W*H}(Qp , V) does agree with our previous definition of H}((@p ,A).

The definition of H}(Ql , A) is much more subtle. The generally accepted def-
inition (which recovers the usual definition in the case of the Tate module of an
elliptic curve) is

H{(Q,,V) =ker(H'(Q,,V) = H'(Q,,V @ Berys))

and H}(Q,,,A) = W*H} (Qp,V). Here Berys is one of Fontaine’s “big rings”. We
will not concern ourselves very much with this definition in this paper, although
in many ways it is one of the most important topics. It is possible to make this
definition much more concrete, but even that does not really make this condition
any easier to deal with.

In passing, we should note that H'(R, A) = 0 (since [ # 2), so we need not
concern ourselves with any definitions at infinity. We have now defined H} (Qp,A)
for all primes p, and with it the Selmer group H}(Q, A). Of course, we can mimic
the identical construction with A* instead of A, and thus we also have a Selmer
group H}(Q, A%).

We can also redo the construction for the Galois module T'. Note that T is fun-
damentally quite different from A, in that it is free over Z; rather than isomorphic
to several copies of (/Z;. The definitions are nevertheless quite analogous. Let
i : T — V be the natural inclusion, and for all p define

H}(QIHT) = Z:lH}(QIHV)

We also define singular quotients Hy(Qy,T) = H'(Q,, T)/H}(Qp, T). In this case,
it will turn out that the singular part of the local cohomology is that which we can
most easily work with. One can also define a Selmer group for T', although we will
have no need to consider it.

We will also need corresponding subgroups for the finite modules 7}, and A*[I"].
For any prime p, we simply take H}(Qp , A% ) to be the inverse image of H} (Qp, A¥)
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under the natural map H'(Qy, 4;,) — H'(Q,, A*). Similarly, we define H}(Qy, T5)
to be the image of H}(Q,, T') under the natural map H'(Q,,T) — H'(Q,,T,). One
can now define singular quotients and Selmer groups in the usual way.

It is worth noting the general philosophy: we took the natural definition of
unramified cocycles in H!(Q,, V) (with the exception of the case p = [, which was
more complicated) and we then let these choices propagate down to all of the related
Galois modules.

Returning to the case of T} F, recall that one defines the Shafarevich-Tate group
II(E/Q) as the cokernel of the Kummer map

E(Q ®z Q /% — H}(Q T E).

As before we have no obvious analogue of E(Q) in our situation. The work of Bloch
and Kato suggests that the correct analogue is the following: let

H}(Q V) = ker (Hl(@, V)= [[H (@p,V)/H}(@p,V)>

be the Selmer group for V, and define the “rational points of A” to be
Note that it follows immediately from the definition of the H} (Qp,A) that A(Q)

actually lies in H}(Q, A), although it could conceivably be smaller. We define the

Shafarevich-Tate group III(A/Q) to be the quotient H}(Q, A)/A(Q), so that there
is an exact sequence

0— A(Q) — H}(Q A) — II(4/Q) — 0.
IT(A/Q) is to be thought of as elements of the Selmer group which appear over A
but not over V. Note also that despite the similar notation, IIT(A/Q) is not the

same as any of the Shafarevich-Tate groups we considered earlier.
Again, we can make analogous definitions for A*(Q), yielding an exact sequence

0— A*(Q) — H}(Q,A%) - III(A*/Q) — 0.
We are now in a position to finish our reductions of the previous section.

Lemma 10.7. 1IT' (Gg s, Sym® E[l]) injects into H}(Q, A).

Proof. As an abelian group A is isomorphic to (Q /Z;)3, so multiplication by [ is
surjective on A. Furthermore, the kernel of multiplication by [ on A,

1
Sym2 TlE & iZl/Zl,
naturally identifies with Sym? E[l], so there is an exact sequence
(2) 0 Sym’>E[l] » A5 A 0.

The fact that E[l]® E[l] is assumed to have no Gg,-invariants for any p € S — {oo}
insures that the direct summand Sym? E [1] has no G s-invariants; indeed, knowing
that it had no invariants at any one place would suffice. It follows easily from this
that A itself has no G, s-invariants, as if there were any, then they could be realized
in Sym? E[l] by multiplication by an appropriate power of I. Thus the long exact
sequence in G s-cohomology associated to (2) yields an injection

H1 (GQ,s, Sym2 E[l]) — H1 (GQ,S, A)
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Furthermore, under this injection HIl(GQS,Sme E[l]) maps into HIl(GQS,A).
Indeed, there is a commutative diagram

3) H'(Go,s, Sym® B[l]) —— H'(Gg.s,4)

| |

IT,es H'(Qy, Sym® E[l]) —— [T es H'(Qy, 4)

This shows that any element of HII(GQ,S, Sym? E[l]), which is by definition trivial
in each H'(Q,, Sym? E[l]), is automatically trivial in each H'(Q,, 4), and thus lies
in IT'(Gg.s,4). In other words, the induced map on the kernels of the vertical
maps in (3) is the desired injection

IT' (Gg,s, Sym” E[l]) — I (Gg,s, A).

To prove the lemma it will therefore suffice to show that ITT' (G s, 4) injects into
HY(Q A).

It follows from Lemma 10.4 that there is an injection
H'(Go.s,4) — HY(Q, 4)
and that the composite maps
(4) H'(Gos,4) = H'(Q 4) —» H'(I,,4) = H'(Q,, 4)/H}(Qy, 4)

are zero for all p ¢ S. We must show that the image of IIT' (Gg. s, A) in H'(Q, A)
lies in H}(Q, A). By (4), this image is automatically locally unramified for all p ¢ S.
Furthermore, an argument using a diagram analogous to (3) above shows that the
maps
II' (Gg,s, A) — H'(Q, 4) — H'(Q,, A)

are zero for p € S. Thus the image of III' (Gg,s, A) trivially lands in H}(Q,, 4) for
such p. Thus now IIT* (Go,s, A) maps to H} (Qp, A) for every prime p, so its image in
H'(Q, A) lies in H}(Q, A). Thus T (Go,s, A) injects into H}(Q, A), which proves
the lemma. |

At this point, we have reduced the proof of Theorem 10.1 to the vanishing of
the Selmer group H}(Q, A).

The L-function of Sym? T)E

Before we complete our final reformulation of Theorem 10.1, we should give the long
promised explanation of the term L(Sym? T;F,0)/Q. Recall that the L-function of
the Tate module of an elliptic curve (also known as the L-function of the elliptic
curve) is defined using the characteristic polynomials of Frobenius elements acting
on T;E. We use an analogous method to define L(Sym?®TjE,s). Specifically, the
action of Gg, on T' is unramified for every p ¢ S, so it makes sense to talk about the
action of an arithmetic Frobenius element Fr, on T'. Let P,(t) be the characteristic
polynomial of ]F‘r;1 acting on T

P,(t) = det(1 — (Frp |7)t).
For p € S — {l}, Fr,, is only well-defined acting on the inertia invariants 77, so we

define
Py(t) = det(1 — (Frp 71, )t]).
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These are all initially polynomials with coefficients in Z;, but it turns out that
P,(t) actually has coefficients in Z and the polynomial P,(t) does not depend on
the distinguished prime [, so long as [ # p. (Again, this is all completely analogous
to the T} E case.)

This suggests that to define the factor P,(t) itself, we should not work directly
with 7', but rather switch to Sym? T, E for some p # [. Sym? T, FE is unramified at
[ (since E is assumed to have good reduction at [), so Fr; is well-defined here and
we define

Pi(t) = det(1 — Fry |sym? 1, 5t)-

As before this is independent of the choice of auxiliary p # I.
We now define
s)=11P0 )"
P

It is shown in [19] that L(T, s) is an entire function of s.

Since E is modular, one can use the work of Shimura [145] to compute spe-
cial values of this L-function. Let N be the conductor of E and fix a modular
parameterization

é: Xo(N) = E

of E. We assume that ¢ is minimal in the sense that deg ¢ is as small as possible for
our fixed E and N. Let f(z) be the newform corresponding to ¢; this means that
for all p not dividing N, the p*" Fourier coefficient of f(2) equals p+ 1 — #E(E,).
Let w be the Néron differential on E. (If F is given in the form y? = 2 + az + b,
w is just dz/2y.) Since ¢ is defined over Q, one can show that the pullback of w
under ¢ must be a rational multiple of the differential 27if(2)dz on Xo(N). We
define the Manin constant ¢ € Q* by the equality

¢ w = 2wif(z)dz

Work of Mazur shows that ¢ is divisible only by 2 and primes of bad reduction for
E; see [95, Corollary 4.1].
We also use w to define the period Q2 by

O =mi / w A .
E(©
Shimura’s formula is

5) (T 0) _ _ deg ¢ H

Nc2
peS’

Here S’ is the subset of S of places where E has potentially good reduction. Note
in particular that L(T,0)/€ is rational and non-zero.

We now state the theorem which we will prove in the remainder of this paper
and explain how it implies Theorem 10.1.

Theorem 10.8. Let E be a rational elliptic curve and let ¢ : Xo(N) — E be a
modular parameterization. Let | be a prime such that

o FE has good reduction at [;

o 1>5

e The Tate module representation p : Gg,s — GLa2(Z;) is surjective.
Then deg ¢ - H;(Q, A*) = 0.
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To see that this implies Theorem 10.1, recall that we had already reduced the
proof to showing that H}(@, A) vanishes. We had also assumed that [ does not
divide L(T,0)/Q2. We first must show that I does not divide deg ¢ either. To see
this, by (5) we need to show that the rational number

1
N II
peS’

has no factors of [ in the denominator. But N and ¢? are divisible only by 2 and

primes of bad reduction for E, and each P,(1) is an integer, so this is clear. Thus
[ does not divide deg ¢.

Now, by Theorem 10.8, H} (Q, A*) is annihilated by the [-adic unit deg¢. But
H}((@, A*) is an [-power torsion group since A* is, and it follows that it must be 0.
This in turn implies that both A*(Q) and ITI(A*/Q) vanish, as they are a subgroup
and a quotient of H}(Q, A*), respectively. Flach has shown (see [49]) that the
vanishing of A*(Q) implies that of A(Q). Furthermore, he constructs (generalizing
ideas of Cassels and Tate; see [48]) a perfect pairing

I(4/Q) ® LI(A*/Q) — Q/Zs;
thus the vanishing of ITT(A*/Q) implies that of III(A/Q). Since both A(Q) and
IIT(A/Q) vanish, this implies that the Selmer group H} (Q, A) vanishes, which com-
pletes the proof of Theorem 10.1.

Kolyvagin’s theory of Euler systems

Until the mid-eighties the problem of bounding Selmer groups was nearly hopeless;
there were no methods which worked in any generality. This changed dramatically
with the work of Thaine and Rubin and finally Kolyvagin’s theory of Euler systems.
Since we only seek to annihilate H} (Q, A*), rather than actually bound its order, we
will need only the rudiments of the theory. There are several good sources for more
extensive treatments: see [155, Chapter 15] for a nice introduction, [66] and [122]
for applications to the arithmetic of elliptic curves, and [124] for a general theory.
In fact, all of these sources deal with a slightly different type of Euler system than
we will use. We will have more to say about this later.

We only sketch the main ideas. For a proof of the result we will need, see [50,
Proposition 1.1] or [157].

Fix a power {" of | and set T,, = T/I"T, A = A*[I"]. We must work with
these finite modules for technical reasons; passing from them to the full modules
will be easy. The basic idea is the following: recall that since A% = Hom(T,, w»)
there is a Tate local duality

H! (QpaTn) ® H! (@p:A:L) — QZ/ZH
see [156, Theorem 1]. One can show easily that H}(Q,,,Tn) and H}((@,,,A;‘L) are

exact annihilators of each other (see [157, Lectures 5 and 6]), so that restricting
the right-hand factor to H} (Qp, Ar) gives a perfect pairing

(6) H;(Qy, Tn) @ Hp(Qp, A7) = Q/Z1.
These local pairings sum to a global pairing

™) (e;Hi(@p,Tn>) © HY(QAL) = Q1 /2
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the pairing of an element (c,) € ®H{(Qp, T,) and d € H}(Q, A},) is simply the sum
of the local pairings (6) of ¢, and res, d; since ¢, = 0 for almost all p, this is well-
defined. This pairing is not perfect, but it does have the following key property,
which is a consequence of global class field theory: the image of HY(Q,T),) under
the natural map

H'(QTn) = [[H'(Q, T0) = [ HE(Qp, T)
p p

actually lands in ®,HL(Q,,T,) (see [157, Lecture 7, Section 2.1]; this is one place
where it is critical that we dropped to a finite quotient of T') and it is orthogonal
to all of H}(Q, A},) under the global pairing (7); see [157, Lecture 8].

The significance of this to our problem is the following: suppose that for lots of
primes r we can exhibit elements ¢, € H' (Q, T},) with the property that they restrict
to 0 in H.(Q,,T},) for all p except for r itself, where they restrict to something non-
zero. Under the global pairing, the image of ¢, in ®@H.(Q,,T},) is orthogonal to all
of H} (Q, Ax). But the definition of the global pairing together with the fact that
¢ restricts to 0 in HL(Qy, T},) away from r now shows that res, ¢, € HL(Q,,T,) is
orthogonal to the image of H}(Q, Ar)in H}(Q,,,A:l) under the Tate local pairing
at r. If res, c,. generates a submodule of H!(Q,,T,) of small index, then this
orthogonality and the fact that the Tate local pairing is perfect will force H} (Q A%)
to map into a small subgroup of H}(Qr ,A*). Since we can do this for lots of r, we
obtain conditions on the local behavior of H} (Q, A%) at many primes r. Hopefully
if we could do this for enough primes r we could somehow show that the local
conditions are so stringent, that the group H} (Q, A%) itself must be small.

Before we state all of this somewhat more formally, we prove the following
fundamental lemma. We will call a prime p good if it is not in S and if a Frobenius
element at p acts on E[l] as complex conjugation. This is equivalent to Fr, being
a complex conjugation element on the splitting field Q(E[l]) of E[l]. This field is
a finite extension of Q since E[l] is finite, so by the Chebotarev density theorem
there are infinitely many good primes.

Lemma 10.9. Assume p ¢ S. Then
H(Q,,T) = T(~1)%.
If p is good, then this group is a free Zj;-module of rank 1. In particular, each
H!(Q,,T,) is a free Z /1"Z-module of rank 1.
Proof. For the first isomorphism, recall that
H!(Qy,T) = HO(§, H' (1, T)).
Since I, acts trivially on T', H! (I,,, T') is nothing more than Hom(I,,,T). Now, T is a

pro-l group, so only the pro-/ part of I, can map to it non-trivially. By Lemma 10.5,
this quotient is isomorphic to Z;(1) as a Gg,-module. We conclude that

HO(E,, H' (I,, T)) = H*(E,, Hom(Zy(1), T)).

But Hom(Z(1),T) is canonically isomorphic to Hom(Z;, T'(—1)), which in turn is
just T'(—1). This proves the first statement.

Now assume that p is good. This means that Fr, acts on E[l] as complex
conjugation. In particular, it is a non-scalar involution, which one easily shows
implies that it acts diagonally on E[l] with eigenvalues 1 and —1. A Nakayama’s
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lemma argument together with Hensel’s lemma and a dimension count allows one to
conclude that there is a basis z, y of T} F over Z; with respect to Fr, acts diagonally;
that is, Fr,(z) = uz and Fr,(y) = vy, and we must have

u=-v=1 (modl).

Note that uwv is the determinant of Fr, acting on T;E, which is just e(Fr,) = p
since T} E has cyclotomic determinant by the Weil pairing. In particular, p = —1
(mod 1).

A basis for T = Sym> T)E is given by 20 2,2 Qy + Yy Q x, y Y. Fr, acts on the
first by multiplication by u?; on the second by multiplication by uv = p; and on
the third by multiplication by v2. Note that u?> = v> = 1 (mod [), which implies
that neither u? nor v? equals p.

Now consider T'(—1). Fr, acts on Z;(1) by multiplication by e(Fr,) = p, so
it acts on Z;(—1) by multiplication by p~!. Thus Fr, acts on our basis of T'(—1)
by multiplication by u?p~', 1 and v?p~! respectively. As we saw above, the first
and last terms are different from 1. It follows that only the rank one subspace of
multiples of z®y +y® is invariant under the Gy, -action, so H}(Q,,T) = T'(-1)%
is free of rank one over Z;, as claimed.

The result for T;, follows exactly the same argument. O

We are now in a position to give a precise definition of the sort of set of coho-
mology classes we seek: let 7 be an integer. We define a Flach system of depth n
for T, to be a collection of cohomology classes ¢, € H(Q,T},), one for each good
prime r, such that:

® ves, ¢, lies in Hy(Qp, Ty) for p # r;

e 7;-tes, ¢, contains nHL(Q,,T),).

The second condition is equivalent to the quotient HL(Q.,T,)/Z; - res, ¢, being
annihilated by 7. By Lemma 10.9, H.(Q,,T),) is a free Z /I"Z-module of rank 1,
so this condition is reasonable. Note that to check both of the conditions in the
definition above, we simply need a good understanding of the singular restriction
maps

HY(Q Tn) = HY(Qy, Tn) — H;(Qy, Tr)
for all primes p.

Of course, it is trivial and not very useful to write down a Flach system of
depth [™ for T},; to make this a useful notion, we will want n to be independent of
n.

Recall that we have assumed that the Tate module representation p : Gop —
GL2(Z;) is surjective. This implies immediately that E[l] is an absolutely irreducible
Go-representation, which in turn one can check implies that A*[/] = (Sym? E[l])*
is absolutely irreducible. Even though we are assuming all of these hypotheses, we
will include the relevant ones in the hypotheses of each result below.

Given what we have said so far, the following lemma is fairly straightforward.

Lemma 10.10. Assume that T,, admits a Flach system of depth n. Then for every
d € H}(Q, A},) and every good prime r, ves, d lies in Hy(Qy, A},)[1].

Proof. See [157, Lecture 15, Section 1.2]. O

More difficult is the next result, which goes from this local annihilation result
to a global annihilation result. Let K be the fixed field of the kernel of Gg,s
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acting on E[I™]; it is a finite extension of Q since E[I"]* is finite. Note that this
field also lies in the kernel of the Gg,s action on A*[I"] (since its Galois action
is entirely derived from E[I"] and the cyclotomic character) and that there is a
natural inflation injection

HY(K/Q A;) = H'(Q 47).

Lemma 10.11. Assume that | # 2 and that A*[l] is absolutely irreducible as a
Go,s-module. Let d € H'(Q, A%) be such that res,d = 0 for every good prime r.
Then d lies in the image of H' (K/Q, A%).

Proof. See [157, Lecture 15, Section 1.3]. O

Lemma 10.10 and Lemma 10.11 combine to show that
nH}(Q, 45) C H' (K/Q, A7)
Since the I"-torsion representation p, : Go,s = GL2(Z/I"Z) is surjective, we will
have Gal(K/Q) 2 GLx(Z/1"Z). Furthermore, Lemma 10.2 and Lemma 10.3 show
that A% = ad’(p,). The next result, which is purely a statement about group
cohomology, now finishes our proof, at least at the level of ["-torsion.

Lemma 10.12. Let GLy(Z /I"Z) act on End®(Z /I"Z) via the adjoint action. Then
H'(GLy(Z/1"Z),End’(Z/I"Z)) = 0.
Proof. See [34, Lemma 2.48] and [50]. O
Combining all of this, we have the following theorem.

Theorem 10.13. Let E be a rational elliptic curve and let | be a prime. Let
p: Gg = GLa(Z;) be the associated Tate module representation. Assume that p is
surjective. Further assume that for every good prime r there is a class ¢, € H'(Q, T)
such that

o ves, ¢, lies in Hy(Q,,T) forr # p;
e 7Z;-tes, ¢, contains nHL(Q,,T),).
Then n annihilates H}((@, A*).

Proof. The given Flach system for T" induces one for each T},. The results to this
point have thus shown that 7H}(Q, Ay,) = 0 for each n. But any class d € H}(Q, A*)
must be annihilated by some power of [, so it lies in the image of some H}(Q, Ax).
(Note that H}(Q, A;,) maps into Hy(Q, A*) since we defined the finite subgroups
for AX using those for A*.) Thus nd = 0, which completes the proof. O

The proof of Theorem 10.13 is purely a Galois cohomology argument, and
therefore there is no actual need to assume that the representation p comes from
an elliptic curve. For example, in [51] Galois representations coming from more
general modular forms are considered.

The machinery we have given is sufficient for annihilation and finiteness results.
To actually obtain a bound on the order of H}(Q, A*), one has to exhibit classes
not only for prime levels (like the ¢.) but also for composite levels. Kolyvagin’s
derivative construction is then used to turn these classes into better and better
annihilators. We should note, however, that with most Euler systems which have
been studied the classes ¢,, are defined over larger and larger fields, depending on
n. In our case, the classes would all be defined over Q. Such an Euler system is
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often called a geometric Fuler system, and there is not yet a general theory of such
objects. For one example, see [123]. In fact, no one has succeeded in extending
the Flach system above to a full geometric Euler system; this was the “gap” in
the original proof of semistable Shimura-Taniyama by Wiles, which was eventually
filled in by Taylor-Wiles using different methods.

The Flach map

We continue to let E be an elliptic curve over Q and ¢ : Xo(N) — E a modular
parameterization. It remains to construct a Flach system for T of depth deg ¢.
This construction lies at the heart of Flach’s proof. These classes will come from
certain well-chosen geometric objects on the surface £ x E, although in order to
actually exhibit them we will need to work on the surface Xo(N) x Xo(N), which
has a much richer intrinsic geometry. These objects are then transformed into
classes in H'(Q, T') via a certain Chern class map. The key to Flach’s construction
is that it is possible to read off local properties of these classes in H.(Q,,T) from
corresponding local properties of the associated geometric objects. That is, we will
begin with a map ¢ : €(E x E) — HY(Q,T), where C(E x E) will be defined in
a moment purely geometrically. We cannot describe the image of o directly (we
can’t even really describe H'(Q, T) effectively), but there is (for p not lying in S)
a commutative diagram

(8) C(E x E)

|

HY(QT) —HY(Q,T) —=H;(Q,, T)

to be filled in later. Since all we care about for the production of our Flach system
is the restriction of classes to H!(Q,,T), to check that classes ¢, really form a
Flach system we will be able to bypass the complicated H!(Q, T') entirely and work
instead with much more concrete geometric objects.

We begin by defining C(E x E), which will involve working with curves lying in
the surface E x E. Let C' be any projective geometrically integral algebraic curve
over (Q; we do not assume that C' is non-singular. We will be interested in rational
functions on C which have trivial Weil divisor. (Recall that the Weil divisor of the
function f on C' is the formal sum of the points at which it has zeros minus the
formal sum of the points at which it has poles, all counted with multiplicity. Often
Weil divisors are only defined for nonsingular curves, but it is possible to define
them more generally. The simplest approach is to define Weil divisors on singular
curves by considering Weil divisors on their normalizations and then identifying
points which become identified on the singular model. We will see an example of
this in a moment.) If C is nonsingular, then it is a standard fact that the only
such functions are constant. However, if C is singular, it is possible to exhibit
non-constant, rational functions with trivial Weil divisor.

For an example, consider a curve C' with a nodal singularity P € C(Q). Let C’
be its normalization, with P; and P> the points lying above P. Let f be a rational
function on C' with divisor nP; — nP, for some n. (Such a function may or may
not exist for a general C’; it will certainly exist if C' has genus 0, for example.) C’
and C are birational, so f can also be interpreted as a rational function on C', and
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both P; and P, map to P. Thus f has trivial Weil divisor on C', even though it is
a non-constant rational function.

Now consider the non-singular projective surface E x E. We define C(F x E)
as follows: elements are pairs (C, f) of (possibly singular) curves C' contained in
E x E together with a rational function f on C' with trivial Weil divisor. We also
require that both C' and f are defined over Q. Flach defines a map

0:C(Ex E)—HY(QT)

which is what we will use to generate our Flach system. For the definition of o,
which involves étale cohomology and algebraic K-theory, see Appendix B.

Let us try briefly to explain the underlying philosophy by analogy with algebraic
topology. Begin with the genus one complex curve E(C), which we can regard as
C/A for an appropriate lattice A. One way to obtain A is as the integral homology
group Hy (E(C),Z) (just thing about the standard homology generators on a torus),
which is a lattice of maximal rank in H; (E(C), R) = C. From this point of view the
["-torsion on F is linA, so that the [-adic Tate module of E is A ®z Z;; thus we can
regard the [-adic Tate module of E as H;(E(C),Z,;). Of course, we have lost any
trace of Galois actions, but let us not concern ourselves with this at the moment.

Now consider the complex surface E(C) x E(C) and its second homology group
Hy(E(C) x E(C),Z). The Kiinneth theorem shows that this group surjects onto

H,(E(C),Z) ®z H1(E(C),Z).
Tensoring this with Z; yields
Hy (E(C),Zi) ®z, Hi1(E(C), Z))

which by the above discussion contains Sym® T)E = T as a direct summand. Com-
bining all of this we see that we have a map

Hy(E(C) x E(C),Z;) — T.
By Poincaré duality, we can also regard this as a map
(9) H?*(E(C) x E(C),Z;)Y =T

where the V denotes the Poincaré dual. We will return to this map later.
Now consider a pair (C, f). The curve C has real dimension 2, and therefore
determines in a natural way an element of the homology group

Ho(E(C) x E(C),Z).

If f has non-trivial divisor on C, then we could also use this divisor (which has real
dimension 0) to determine an element of

Ho(E(C) x E(C),Z).

In our case, however, f has trivial divisor. In this situation, the pair (C, f) does not
determine anything of dimension 0, but still somehow contains more information
than just C itself. This extra information has the effect of cutting down the relevant
dimension by 1, so that (C, f) determines an element of

H, (E(C) x E(C),Z).

(This is where the algebraic K-theory comes in; K-theory is very good at keep-
ing track of dimensions like this which may not make all that much sense purely
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geometrically.) Applying Poincaré duality we can regard this as an element of
H?(E(C) x E(C),Z)V. So far, then, we have a map

(10) C(E x E) — H*(E(C) x E(C),Z)".

(At this point we should confess that this map turns out to just be the zero map.
It will nevertheless serve our motivational purposes.)

Etale cohomology is the algebraic analogue of singular cohomology, and the
first miracle of étale cohomology is that the preceding construction can be carried
out over Q rather than C, so long as we always use [-adic coefficients. Thus the
pair (C, f) should give rise to an element of the dual H} (Ey x Eg,Z;)Y of the
étale cohomology group H, (Eg x Eg,Z;); this last cohomology group is isomorphic
to H?*(E(C) x E(C),Z;) as an abelian group, but has the advantage of having a
Galois action.

In fact, since (C, f) is defined over Q, this element should be Galois invariant,
yielding a map

C(E x E) — (H2,(Eg x Eg,Zy)") "
analogous to (10). Unfortunately, H} (Eg x Eg,Z;)¥ can be shown to have no
non-zero Galois invariants, so at the moment all of this work has produced 0.

The second miracle of étale cohomology is that we can carry our construction
out over Q, rather than Q. Thus (C, f) yields an element of H (E x E,Z;)V.
This group is no longer isomorphic to any singular cohomology group, but rather
is a complicated combination of various Gal(Q/Q)-cohomology groups of étale co-
homology groups of Eg X Eg. It admits a natural map via a spectral sequence
to

HO(Q HE, (Eg x Eg, 7)Y ).
However, as we said above, this group vanishes, and from this one shows that the
spectral sequence yields a map

H (E x E,Z;)" — Hl(@, HZ, (Eg X EQ,ZZ)V).
Thus we finally have a map
C(E x E) —» H'(Q HE, (Eg x Eg,Z;)").

Combining this with the étale analogue of (9), we finally obtain our desired Flach
map
0:C(E x E) - H(QT).

We now discuss the local behavior of ¢. Let p be a prime not lying in S. We

will define a map
dy: C(E x E) — Div(Efg, x EF,)

where Div(Efg, x Ef,) is the group of Weil divisors (defined over E,) on the non-
singular surface Ef, X EF, . (Recall that a Weil divisor on a surface is a formal sum of
curves on the surface.) d, is the map which will go on the top of (8) above. To define
d,(C, f), first consider the reduction of C' modulo p. (Technically, by the reduction
of C' modulo p we mean the base change to F, of the scheme-theoretic closure of
C in a model of E over Z,. However, one loses nothing by simply regarding this
as considering the equations defining C' modulo p.) This may well have several
geometric components C1, ... ,Cy, even if in characteristic 0 it did not. We claim
that if the function f has a zero or pole at any point of a component C;, then it has
a zero or pole of the same order along the entire component C;. (Actually, poles
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and zeros can combine at the points where the C; intersect, but this doesn’t matter
much.) The idea is that if f had a zero or pole at an isolated point of C;, then we
could lift this to a zero or pole of f over Q, which is not possible by the definition
of C(E x E). Given this, for any component C; we can let m; be the order of the
zero or pole of f on Cj: of course, we could have m; = 0. We define

dp(C, f) = Zmici-

The last thing we will need to connect the geometry to the behavior of cohomol-
ogy classes is a map from Div(Eg, x Er,) to H(Qp,T). Recall that by Lemma 10.9
we have HL(Q,,T) = T(—1)%%». This in turn is isomorphic to End(();]F (TE), by
Lemma 10.2. That is, the singular quotient at p corresponds precisefy to trace
zero Gy, -equivariant maps of the l-adic Tate module of E. The map we seek is a
standard one in algebraic geometry, called a cycle class map:

s : Div(Ey, x Ey,) = Endg,, (T1E) — Endg, (TiE)

(the second map is simply projection onto a direct summand). We will not give a
general description of the map Div(EF, x E,) — Endg, (T1E), except in the special
case we will need. (In fact, if Endg, (T1E) is given an appropriate cohomological
interpretation, then the cycle class map is really just an algebraic version of part of
the algebraic topology construction discussed above.) Let g : Ef, — Ef, be some
map. Let I'y be the graph of g, by which we mean the image of the product map

id Xq E]Fp — E]Fp X E]Fp-

Then I'y has codimension 1 in Ef, X Ef,, and thus is an element of Div(Ef, x Ef, ).
The image of I'y under s is nothing other than the endomorphism of T;E induced
by the map g (or more honestly its projection onto the trace zero direct summand).
This endomorphism is G, -equivariant since g is defined over F,.

We are finally in a position to state the fundamental local description of the
map o: for every prime p not in S, there is a commutative diagram

dp

(11) C(E x E) Div(Eg, x Eg,)

H'(Q T) — H'(Q,,T) — H}(Q,, T) — Endg;, (1)

“All” we have to do to generate our Flach system, then, is to exhibit appropriate
elements of €(E x E) and compute their image in Endy, (T;E) via the clockwise
maps. Unfortunately, in general this would be extremelypdifﬁcult. That is, given
an arbitrary surface S, it is a very difficult problem in algebraic geometry to write
down many particularly useful curves on S. In order to do this in our case we will
have to take full advantage of the fact that E is modular.

The geometry of modular curves

In this section we review the facts we will need about the geometry of modular
curves. For a more thorough treatment and references to the standard sources, see
[41, Part II].

Let N be a positive integer and let I'g(/N) be the usual congruence subgroup
of SLo(Z). Recall that orbits for the I'g(NN)-action on the upper half plane $



130 F. Q. GOUVEA, GALOIS DEFORMATIONS

correspond to isomorphism classes of pairs of complex elliptic curves E and cyclic
subgroups of E(C) of order N. Furthermore, the orbit space I'o(N)\$ can be given
the structure of a non-compact Riemann surface. We will write Yp(N)?" for this
Riemann surface. (The “an” is for analytic.) We can also compactify Yy(N)*»
by adding a finite number of points called the cusps; we write Xo(IN)*" for the
resulting compact Riemann surface.

It is a classical fact of algebraic geometry that every compact Riemann surface
can be realized as a nonsingular projective complex algebraic curve; that is, there
is an algebraic curve Xo(NN)c over the complex numbers such that the C-valued
points of Xo(N)c recover Xo(N)2*. A fundamental fact in the arithmetic theory
of modular curves is that this curve can actually be canonically defined over the
rational numbers Q. That is, the polynomial equations which define Xo(N )¢ can
be canonically chosen in such a way that all of the coefficients are rational. We
will write Xo(N)g for this nonsingular projective rational algebraic curve. The
subscheme of cusps of Xo(/N)g is canonically defined over Q, so Y5(N)*" can also
be realized as the complex points of a nonsingular algebraic curve Yy (N)g; of course,
Yo(N)g is only quasi-projective.

Now that we have a model for our modular curve over (; we can ask how
the equations for Xo(N)g reduce modulo primes p. The fundamental result is that
Xo(N)qg reduces to a nonsingular projective algebraic curve over B, for every prime p
which does not divide N. (Perhaps the most compact way to say this is that Xo(N)g
is the generic fiber of a canonical smooth proper Z[1/N]-scheme. This description
allows one to work with Xo(N)g and all of its reductions simultaneously, which is
often convenient; nevertheless, we will content ourselves below with working one
prime at a time.) From now on we will just write Xo(N) when it does not matter
what field (of characteristic 0 or p not dividing N') we are working over; the behavior
of the modular curves over the various fields is virtually identical.

If p is a prime which divides N, then Xo(N) will pick up singularities over
E,, but at least in the case that p divides IV exactly once it is possible to very
explicitly describe Xo(N)g,: it has two irreducible components, each isomorphic
to Xo(N/p)g, (which is nonsingular by what we said above), and they intersect
transversally at a finite number of points.

The other question one might ask about our models Yy(N) is whether or not
they still classify pairs of elliptic curves and cyclic subgroups of order V. Let us
say that a pair of an elliptic curve E and a cyclic subgroup C of order N is defined
over a field K (of characteristic 0 or p not dividing N) if E is defined over K and
if C' is mapped to itself under the action of every element of the absolute Galois
group of K. (Note that we do not require that C is fixed pointwise by the Galois
group, which is equivalent to C' actually lying in E(K).) We could hope that the K-
rational points of Y5(NN) correspond to the pairs (E,C) as above which are defined
over K. If this were the case, we would call these modular curves fine moduli spaces
for classifying such pairs. Unfortunately, this is simply not true. This is well-known
in the case N = 1: Y(1)g is isomorphic to the affine line A(b via the j-invariant,
but the j-invariant is not enough to determine the isomorphism class of elliptic
curves over fields which are not algebraically closed. The problem in the general
case is similar, although somewhat less severe.

However, these modular curves are at least coarse moduli spaces. We will not
give the technical definition of this, except to say that it means that the modular
curves are as close to fine moduli spaces for classifying pairs as it is possible for
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them to be. In particular, every pair of an elliptic curve E and a cyclic subgroup
C of order N, defined over a field K, does give rise to a point of Yy(N)(K).

In passing, we should note that it is also possible to give a modular interpre-
tation to the cusps of Xo(NN) in terms of generalized elliptic curves. We will not
give a description of this here; it is, however, extremely useful for computations
involving the cusps.

We can use our moduli interpretations to define various maps between modular
curves. (Actually, the description we gave above is not enough to actually make
rigorous the upcoming definitions. However, we assure the reader that these con-
structions can be made entirely rigorous with a more thorough understanding of
the “moduli interpretation” of Xo(NN).) Let K be a field as above, and let r be a
prime not dividing N. A pair of an elliptic curve E and a cyclic subgroup C of
order Nr, defined over K, gives rise in a natural way to a corresponding pair with
respect to N: take the same elliptic curve E and take the unique cyclic subgroup
of C of order N; call it Cy. We define

Jr : Xo(Nr) = Xo(N)

to be the corresponding map; that is, it sends the point corresponding to the pair
(E,C) to the point corresponding to the pair (E,Cy). (As we said above, this
requires more work to be a rigorous definition, but it is possible to give it a better
interpretation.) The fact that we can make this definition on the level of points
for any field K (of the appropriate characteristics) insures that j, can actually be
defined over any of the fields Q or F, for p not dividing N. Note that there is a
slight subtlety (which we will ignore) for the field F,., as there we have not said
anything about the moduli interpretation of Xo(Nr).

There is a second way to obtain a map between these modular curves: let C,
be the unique subgroup of C' of order r, and now send the pair (E,C) to the pair
(E/C,,C/C,). This gives rise to a second map

];. : X()(N’I') — Xo(N)
We define the 7" Hecke correspondence T, on Xo(N) to be the image of the product
map
jr X ];, : X()(N’I') — Xo(N) X Xo(N)

It can be shown that T, is a singular curve which is birational to Xo(Nr).
Furthermore, it is possible to give a very precise description of 7T} in characteristic
r. Recall that a curve (or more generally any scheme) over F,. has a Frobenius
endomorphism induced by the r-power map on the function field. Define I' C
Xo(N)p, x Xo(N)g, as the graph of the Frobenius map Fr : Xo(N)r, = Xo(N)g,;
that is, ' is the image of the product map

id x Fr : Xo(N)z, = Xo(N)5, x Xo(N)g,.
We define the Verschiebung T' C Xo(N)p, X Xo(N)r, to be the image of the
transpose map

Frxid: Xo(N)g, = Xo(N)F, X Xo(N)F,.
Note that T, ., I' and I' are all of codimension one in the surface Xo(N)g, X
Xo(N)p,, and thus are divisors. The Fichler-Shimura relation states that there is
an equality

T.r, =T +T".
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of divisors on Xo(N)F, x Xo(N)F,. In fact, each of I and I is the isomorphic image
of one of the irreducible components of Xo(N7)g, (both isomorphic to Xo(N)g,)
which we discussed above. This relation will be the key to our computations below.

Some modular units

Modular curves will be of use to us since the surface Xo(N) xg Xo(N) has all of
the fairly explicit divisors T;.. Our basic plan at this point is to find an appropriate
rational function f, on T, (for each r not dividing N) such that (T, q, fr) €
C(Xo(N)g x Xo(N)g). We will then map the pair (T} g, fr) via ¢ X ¢ into C(Eg X
Ejg), and then by o into H'(Q, T'). If we can also arrange for f, to have trivial divisor
away from characteristic r, then our geometric description of the local behavior of
o will show that f,. maps to 0 in each H.(Q,,T) for p not dividing rIN (recall that
our geometric description of the Flach map broke at the primes in S) and we will
be well on our way to constructing the desired Flach system.

Since T, g is birational to Xo(Nr)g, to exhibit rational functions on 7). g we can
work instead on Xo(Nr)g. Recall that rational functions on Xo(Nr)g are modular
functions of level Nr and weight 0, with coefficients in Q. We will define such a
function as the ratio of two modular forms of the same weight.

We want f, to have trivial divisor over @, so we should start with modular forms
with especially simple divisors. Perhaps the best known is A(z), the unique cusp
form of level 1 and weight 12. A is initially defined on X((1)gp, and has a simple
zero at the unique cusp oo and no other zeros or poles. (A is a pluri-canonical
form, not a function, so it can have more zeros than poles.) Pulling back A via the
natural map 7 : Xo(N)g = Xo(1)g yields a form 7*A on Xo(N)g (this is really
nothing more than reinterpreting A as having level N) which will have zeros of
various orders at the cusps and no other zeros or poles:

diVXO(N)ﬂ‘A: Z n;c;

cusps ¢;

for some integers n;.

We will pull back A to Xo(Nr)g via the two maps j, and j.. In order to
understand the divisors of these forms, we need to know how the cusps behave
under these maps. The basic fact is that the preimage of a cusp ¢; of Xo(N)g
under j, consists of two cusps ¢; 1 and ¢; 2 of Xo(N7)g; j, is unramified at ¢; 1 and
ramified of degree r at ¢; 2. Under j, we have the opposite behavior: ¢;1 and ¢;»
are again the only two points in the preimage of ¢;, but now ¢;» is unramified and
¢i is ramified of degree r. Combining all of this, we find that

. o
leXo(N’I"):J .]TA = E niCi1 + TN;Ci,2
. =] %

divx,(nry, Jr A = E rNiC;1 + NiCi 2.

Both of these forms have weight 12, since A does, so their ratio is a rational function
fr on Xo(N7)g with divisor

diVXO(Nr):J fr = Z(l — T)ni(cm — Ci72).

We now think of f, as a rational function on the singular curve 7). g, which is
birational to Xo(N7)g. As we said above, both ¢; 1 and ¢; » map to ¢; under j, and
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Jr- Since T, is the image of Xo(Nr)p under the map j, x j/, the divisor of f, on
Tﬂ@ is

divy, , fr=" (L=r)ni((jr(cin), dicin) = (Gr(ciz),d(ciz))) = 0.

Thus (T}, fr) € C(Xo(N)g X Xo(N)g), as desired.

We can now define the Flach classes ¢, € H'(Q,T): we first map (T g, fr) to
C(Eqg x Eg) via (¢ x ¢).. That is, let T} o be the image of T’ o under ¢ x ¢ and let
f; be the rational function on T} g induced by f.. (f, is really the norm of f, in
the finite extension of function fields k(Xo(N)g)/k(Eg) induced by ¢.) One easily
checks that

dile,‘w ffl‘ = (¢ X (b)* divTr,lQl fT‘ =0,

o (T} o, f}) € €(Eq x Eg). We now map this pair to H'(Q, T) via the Flach map
o. This is the class ¢,. Note that we defined these classes for all r not dividing N,
even though we only need them for good r. (In fact, one can even define classes for
r dividing N with some care.)

Local behavior of the ¢,

To complete the construction of our Flach system, we need to analyze the local
behavior of the classes ¢, in H!(Q,,T) for all p. Specifically, we need to show that
they map to 0 for all p # r and we need to compute them explicitly for p = r. We
do this using our description in terms of divisors and cycle classes. We distinguish
several cases; for simplicity, we assume that r is good, although this is not critical
to these computations.

p does not divide Nlr

This is the easiest case. d, (T} g, fr) is just the divisor of f; on T;’Fp, and the analysis
of the preceding section of the divisor of f,. over Q goes through in exactly the same
way over F,. Thus

diVTT’f fyln = (¢ X 9)« diVTT;p fr=0,

so dp(T}. g, fr) = 0. Commutativity of the diagram (11) now shows that ¢, maps
to 0 in HL(Q,,T), since it is the image of the pair (T} g, f7) which already maps to
0 in Div(EF, x Ef,). In particular, there is no need to know anything at all about
the map s in this case.

p divides N

This is the case of bad reduction of E and the local diagram we used in the first
case does not hold in this setting. Flach uses two different arguments to handle
this case. If E has potentially multiplicative reduction at p, then one can give
a very explicit description of the Gg,-action on V, and one can compute that
H}(Q,,V) = HY(Q,,V). Tt follows that H{(Q,,T) = 0, so that there is no local
condition to check! If E has potentially good reduction at p, Flach mimics the
argument above in the case of good reduction, using the Néron model of E; see [50,
pp. 324-325] and [51, Section 5.5.2 and Section 6].
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p=1

In this case we again do not have the local diagram to fall back on. Flach uses
results of Faltings to conclude that res; ¢, lies in H} (Qu,T); see [50, pp. 322-324].

p=r

This is the key computation. Recall that the Eichler-Shimura relation says that
T, F, can be written as a sum I'+I" of the graph of Frobenius and the Verschiebung.
We will work with each piece separately.

We begin with I':

Xo(N)r

=

Xo(Nr)p, — = =T = Xo(N)p, x Xo(N),

Fr
.7
Jr

Xo(N)F,

r

(Only one of the irreducible components of Xo(N7)r, maps to I', which is why
we have used a dotted line there.) The function on I' corresponding to j*A is
just the pull back of A under the identity map; thus divr j:A will just be the
usual linear combination of points of ' corresponding to cusps. The function on I’
corresponding to j,.*A is the pull back of A under Fr. Fr is purely inseparable, and
purely inseparable maps are trivial on differentials; see [146, Chapter 2, Proposition
4.2]. Thus Fr* A = j/*A will pick up a zero on I in addition to the usual cuspidal
divisor. One can check that this zero has order 6 (essentially because A has weight
12 = 2-6). As always, the cuspidal parts of the divisor cancel, and we conclude
that
diVF fr = diVF ]:A - diVF ];,A = —o06rI.

The computation for I is virtually identical, except that id and Fr are inter-

changed. Thus
divps fr =6I".
We conclude that
divy,, fr=6(I"-T).

The next step is to push our whole construction forward to E x E. If we let

I'r and I'; be the image of

idXF‘I‘:EFT—)E]FTXE]FT
F‘I‘Xid:E]Fr—)E]FTXE]FT

respectively, then it is clear that ¢ x ¢ maps I' onto I'g and I'" onto I''y. Since each
point of 'y and I'; is the image of deg ¢ points of I and IV, we have the equalities

(¢ x ¢).I' = (deg )’
(¢ x ¢).I" = (deg §)T'
as divisors. We conclude finally that

dp(¢ X ¢)«(Tr g, fr) = 6(deg )T’y — T'p) € Div(Er, x E,).
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We now need to compute the image of this under the cycle class map s. Our
description of s shows that I'g, being the graph of Frobenius at » maps to precisely
the endomorphism of T} E given by Fr,.. (This is well defined since T} F is unramified
at r.) ris assumed to be good, so the proof of Lemma 10.9 shows that we can choose
a basis z,y for T)FE with respect to which Fr, has matrix

u 0
(5 7)

with u = —v = 1 (mod ) and wv = r. This matrix is the image of I'g in
Endg,, (T,E).

To make the corresponding calculation for I'; we will need to reinterpret it as
a graph. Since Fr has degree r, there is a map V : Ef, — Er, with the property
that V o Fr = FroV is the multiplication by r map on Ef, ; see [146, Chapter 3,
Section 6]. I'y; is the image of the map

Frxid: E]FT — E]Fr X E]Fr-

If we precompose with the map V' : Ef, — Ef,, which is a surjective map of degree
r, the literal image will not change, but each point will pick up a multiplicity of r.
Thus the image of the map FroV xV =r xV is rI';. We claim that we can cancel
the two 7’s, which leaves us with the fact that I'}; is the graph of V. The easiest
way to do this is to pretend for the moment that multiplication by r has an inverse
r~! on E. (Of course, this is absurd, but it is somewhat less absurd when one
does the entire computation in the range End(T; E), where r is invertible.) Then an
argument similar to the one above for precomposing with V' shows that the image
of r x V is r? times the image of id xVr~!. This means that s(r['y) = rs(I'y)
is the same as r2Vr~!, where now V is regarded as an endomorphism of T} E. In
other words, s(I'y) is just the endomorphism induced by V.
Since V o Fr = r, this implies that the cycle class of I'}; has matrix

u 0\ ' (v o0
"Lo v S0 w )T
We conclude that 6(deg ¢)(I'y — T'g) maps to

e (57 L0 )

u—v)

in Endg, (TiE), and even in EndOGTr(TlE) since this matrix already has trace 0.
This, then, is the image of ¢, in HL(Q,,T).
Recall that H!(Q,,T) = EndY,_ (T;E) is a free Z;-module of rank 1. One easily
checks that the matrix ’
1 0
(0 5)

is a generator of this module. Combined with our computation above, we find that
6(deg @)(v — u) annihilates

Hi (Q-,T)/Zy - res, c;.
But 6 is an [-adic unit, and v — u = —2 (mod [), so v — u is as well. We conclude
that deg¢ annihilates this module, and thus that the ¢, form a Flach system of

depth deg¢ for T'. This concludes the proof of Theorem 10.13, and with it the
proof of Theorem 10.1.
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Appendix A: On the local Galois invariants of E[l] ® E[]

The purpose of this appendix is to prove the following result.

Theorem 10.14. Let E be an elliptic curve over Q without complex multiplication.
Let ¢ : Xo(N) = E be a modular parameterization of E and let Sy be the set of
places of Q at which E has bad reduction. Then the set of primes such that

o FE has good reduction at [;

The l-adic representation p : G souqy — GL2(Zi) is surjective;
For all p € So, E[l] ® E[l] has no Gg,-invariants;

E[ll ® E[l] has no Gg,-invariants;

l does not divide the degree of ¢;

has density 1 in the set of all primes.

Of course, the first and fifth conditions are obviously satisfied for almost all [.
That the second condition is satisfied for almost all I is a result of Serre; see [132].
The new content is in the third and fourth conditions. We will show that the third
condition is also satisfied for almost all [, and that the fourth condition is satisfied
for a set of primes of density 1.

Recall that by the Weil pairing we can write

Bl ® E[l] = yuy @ Sym® El].

The analysis of Q,-rational points on the first of these factors is immediate from
the fact that (for p # 2) Q, contains precisely the (p — 1)-th roots of unity: it has
Q,-rational points if and only if p =1 (mod ).

We begin the analysis of Sym? E[l] with a modification of the argument of [20,
Lemma 2.3(i)].

Lemma 10.15. Let E be an elliptic curve over Q, and let | be any prime. Then
H°(Q,,Sym? E[l]) # 0 if and only if E(K) has non-trivial I-torsion for some qua-
dratic extension K of Q.

Proof. We first set some notation. Let € : Gg, — Z; be the cyclotomic charac-
ter; its image has finite index in Z;. Let p : Go, — GL(E[l]) and ¢ : Go, —
GL(Sym? E[l]) be the Galois representations associated to E. By the Weil pairing
we have det p = €.

If  is a K-rational [-torsion point for some quadratic extension K of Q,, then
one checks immediately that x ® z € E[l] ® E[l] is Gg,-invariant, which proves one
direction of the lemma.

Suppose, then, that there exists ¢ € Sym? E[l] such that o(r)t = t for all
T € Gg,. Thus 1 is an eigenvalue of (1) for every 7 € Gg, .

Now choose o9 € Gg, such that £(og) is not a root of unity; this is certainly
possible since the image of € has finite index. Let A and p be the eigenvalues of
p(00). Then the eigenvalues of p(0g) are A%, A\ = (o) and p?. Since one of these
is 1 and €(0g) is not a root of unity, we can assume without loss of generality that
A2 =1.

Set 0 = of. The eigenvalues of p(c) are A2 = 1 and p?. We have p? # 1
(since A2u? = g(0p)? is not a root of unity), so we can choose a basis z,y for E[l]
of eigenvectors for p(c), with eigenvalues 1 and (o) respectively. e(o)? is still not
1, from which one easily computes (using the basis t ® z, t Qy+y Rz, y ® y of
Sym? E[l]) that t is a scalar multiple of 2 ® x. It follows easily that z is rational
over some quadratic extension of Q,. O
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We now state the general analysis of torsion in elliptic curves over local fields,
coming from an analysis of the formal group and the component group of the
Néron model.

Proposition 10.16. Let E be an elliptic curve over a finite extension K of Q,
and assume p # 1. Let k be the residue field of K.

e If E has good reduction over K, then E(K) has non-trivial l-torsion only if
[ divides #E(k).

e If E has non-split multiplicative reduction over K, then E(K) has non-trivial
[-torsion only if p=1 (mod [) or ] < 3.

e If E has split multiplicative reduction over K, then E(K) has non-trivial
[-torsion only if p=1 (mod l) orl < 11.

e If E has additive reduction over K, then E(K) has non-trivial [-torsion only
if 1 < 3.

Proof. By [146, Proposition VII.2.1] there is an exact sequence
0 — Ei(mg) = Eo(K) — Ens(k) = 0

where F; is the formal group of E, mg is the maximal ideal of the ring of integers of
K, Ey(K) is the set of points of E(K) with non-singular reduction and E,,(k) are
the non-singular points of the reduction. By [146, Proposition IV.3.2(b)], E;(K)
has no non-trivial I-torsion, so any I-torsion in E(K) must appear in E(K)/Ey(K)
or E,;(k). The proposition now follows from the determination of E,,(k) in the
various cases (see [146, Proposition VIL.5.1]) and the analysis of the component
group of the Néron model of E (see [146, Theorem VII.6.1] and use that the minimal
discriminant has valuation at most 11). O

An entirely similar argument yields the following result for the case p = [.

Proposition 10.17. Let E be an elliptic curve over a quadratic extension K of
and assume | > 5. Let k be the residue field of K.

e If E has good reduction over K, then E(K) has non-trivial l-torsion only if
[ divides #E(k).

e If E has non-split multiplicative reduction over K, then E(K) has no non-
trivial l-torsion.

e If E has split multiplicative reduction over K, then E(K) has non-trivial
[-torsion only if | < 11.

Proof. The only difference with Proposition 10.16 is the possibility of torsion in
E, (K), but this is ruled out by [146, Theorem IV.6.1] and the fact that the valu-
ation of [ in K is at most 2. We can make no statement about the case of additive
reduction since then E, (k) always has I-torsion. O

The last ingredient of the proof of Theorem 10.14 is some additional analysis
of [-torsion in the case of good reduction in characteristic [. Note that if K/Q is a
quadratic extension, then the residue field k is either F; or Fj=.

Consider first the case that k£ = ;. Then by the Riemann hypothesis for elliptic
curves over finite fields (see [146, Theorem V.1.1]) we know that

VI <#E(F)-1-1<2VI
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It follows easily that for [ > 7 the only way to have [ divide #E(IF;) is to have
HE(R) = 1.

Now consider the case k = Fj2. This time the Riemann hypothesis shows that
the only way to have [ divide #E(F2) is to have

#E(Fp) € {12 —1,1%,12 + 1,12 + 21}.

Let a, 8 be the eigenvalues of Frobenius at [ acting on the p-adic Tate module of
E for some p # [; we have a8 = 1. Then by [146, Section V.2],

#EF)=14+1l-a-§
#E[F:) =141 - o - 32
Since aff = [, we have
o’ +2af + 8% = o’ + 21 + 3,
and we conclude that
l+1—#EF)| = 1+2+12 - #E(F:).

This equation has several consequences. First, suppose that #E(Fj2) = 1% — 1.
Then 31 + 1 must be a perfect square, say n?. Thus 3] = n? — 1, which implies that
| = 5. Similarly, the case #E(F;2) = [? can not occur, and if #E(F;2) = 2 +1,
then [ = 3. If #F(FF;2) = [ + 2I, then we find that

#E(F,) € {I,1 + 2}.

We now state and prove a more precise version of the unresolved part of The-
orem 10.14.

Theorem 10.18. Let E be an elliptic curve over Q and let Sy be the set of places
of Q at which E has bad reduction. Let [ be a prime such that

1> 13;

l does not divide p — 1 for any p € Sp;

I does not divide #E(F,) or #E(Fy2) for any p € So;

E has good reduction at l;

#E(F;) is not l orl+ 2.

Then H°(Q,, E[l] ® E[l]) = 0 for all p € So U {l}. In particular, the set of such
has density 1 in the set of all primes.

Proof. The second condition insures that p; has no Qy-rational points for any
p € Sp. To show that Sym? E[l] has no Q,-rational points for p € Sy, we must
(by Lemma 10.15) show that E(K) has no non-trivial [-torsion for any quadratic
extension of Q.. This possibility is ruled out by the first three conditions and
Proposition 10.16. Note that we do need to consider the case of good reduction
here, as even though E has bad reduction over Q,, it may attain good reduction
over K.

To show that H°(Q;, E[l] ® E[l]) = 0, note first that x; has no Q-rational
points, so we must only consider Sym? E[l]. By Proposition 10.17 and the first and
fourth hypotheses, it suffices to show that | does not divide #E(F;) or #E(F;2),
and this follows from the preceding discussion and the fifth hypothesis.

It remains to show that the set of such [ has density 1. It is clear that the first
four conditions eliminate only finitely many primes [. It is shown as a very special
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case of [136, Theorem 20] that the fifth condition is satisfied for a set of primes of
density 1. This completes the proof. O

Appendix B: The definition of the Flach map

In this section we give the formal definition of the Flach map. For conceptual clarity
we will work in a more general setting. Let X be a nonsingular projective variety
of dimension n, defined over Q.

Let X? denote the set of irreducible subschemes of X of codimension p. Quillen
has constructed a spectral sequence from the filtration by codimension of support:

Ef' = & K_p gk(z) = K_p—(X);
rEXP

here k(z) is the function field of the scheme z and the K;k(z) are Quillen’s K-
groups. There is an analogous spectral sequence in étale cohomology:

(B () = @ Hi"(Speck(z), I (-p)) = HP (X, F)

where F is some Tate twist of the constant étale sheaf Z;. For any integer i, these
spectral sequence are connected by Chern class maps

EPT — (BRI (Z4(7))
constructed by Gillet.
Now fix an integer m between 0 and n and assume
o H2""'(Xg,Z((m + 1)) has no Gg-invariants.
This is implied by the Weil conjectures if this cohomology group is torsion free, as
is the case when X is a curve or a product of curves. We define the Flach map
Ot BT Y QU HE (X, Z(m + 1))
as the composition of three maps. The first is the Chern class map above with
p=m,g=-m—1landi=m+ 1
B S (BRI (Zy(m + 1),
The second is an edge map in the étale cohomology spectral sequence above:
(By"™ ) (Zu(m + 1)) = HZ"H (X, Z(m + 1)),

(To see that there really is an edge map from this term, one uses the fact that
terms of this spectral sequence below the diagonal always vanish, as is clear from
the expression above.) This last group appears in the Hochschild-Serre spectral
sequence

HP(Q HY, (Xg, Zi(m + 1)) = HE (X, Zy(m + 1)).

Our assumption above that H°(Q, H;™*' (Xg,Zi(m+1))) = 0 insures that there is
an edge map
HZ" (X, Zy(m + 1)) — HY(Q H*™ (X, Zi(m + 1))

and gives the last map in the definition of oy,.
The map considered in the text is a slight variant of this. Take X = E x E
and m = 1, so that we have a map

o1 : By ? — HY(Q H (Ey x Eg, Z(2))).
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We now show how to manipulate these terms to obtain the map
0:C(E x E) - H'(Q,Sym? T, E)

of the text. Working from the expression above for the Quillen spectral sequence,
1,-2 .
we see that E,’"~ is the cohomology of a sequence
K>k(E x E) — ® k()" — e Z.
ze(ExE)! yE(EXE)?

Quillen computes that the second map is just the divisor map sending a term
f € k(z)* to ®yeamy, where m, is the order of f at y. The kernel of this map is
precisely the group C(E x E); oy is defined on the quotient of this group by the
image of Kok(E x E), so we can also regard it as defined on C(E x E) itself. This
takes care of the domain.

Next, the Kunneth theorem implies that HZ, (Eg x Eg, Z(2)) is torsion free and
that there is a projection

H}, (Ey x Eg, Z(2)) — Hg,(Eg, Zi(1)) ®z, Hy (Eg, Zi(1)).
The Kummer sequence naturally identifies H}, (Eg, Z(1)) with the l-adic Tate mod-
ule T} E, so projecting onto the symmetric direct summand yields a map
H; (Eg x Eg,Z(2)) — Sym® T,E

which is easily used to finish the definition of the map o.

Returning to the general case, let us now investigate the local behavior of o,,.
Let p be a prime different from [ at which X has good reduction (meaning that Xg,
is the generic fiber of a proper smooth Spec Z,-scheme X) and make the additional
assumption:

o He?tm+1(XQp, Zi(m + 1)) has no Gg,-invariants;
Let T = H*"(Xg,Zi(m + 1)). Then there is a commutative diagram

divr,
E;n,fmfl P Amep
lam L
H'Y(QT) HE" Xz, Za(m) S

T

H! (QIMT) - Hi(@paT)

Here A™Xg, is the codimension m Chow group of Xg,, which is just the analogue
of the Picard group in higher codimension; divg, sends a pair (z, f) of a cycle and
a rational function to its divisor in characteristic p; s is the usual cycle class map
in étale cohomology; and the bottom right isomorphism is the natural analogue of
the isomorphism of Lemma 10.9, using the smooth base change theorem to identify
HZ™ (Xg,, Zi(m)) with T(—1). The diagram of the text follows immediately from
this one.

Flach defines the map o (in the case X = E x E, m = 1) using a related
method in [50]. There he proves the commutativity of the above local diagram
(in a slightly different form) through explicit computations. In [51] he gives the
construction of o (this time in the case X = Xo(N) x Xo(N), m = 1) we gave
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above and writes down the local diagram, although his proof of commutativity
is somewhat incomplete and does not immediately generalize. The general case,
which relies heavily on purity conjectures of Grothendieck (which have been proven
in the relevant cases by Raskind and Thomason), is the subject of [158, Chapters 6
and 7]. The construction of maps similar to o also appear in the work of Kato; see
[4] and [127]. Mazur offers an alternative construction of the Flach map in [99],
without any explicit dependence on K-theory. There he also studies some algebraic
properties of the map which are not immediately apparent and which permit some
Euler system type conclusions even without the existence of an Euler system.

Tom WESTON
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APPENDIX 3

An introduction to the p-adic geometry of modular curves
by Matthew Emerton

The aim of this appendix is to give some feeling for the ideas behind the p-adic
theory of modular curves and modular forms (at a more down to earth level than
that of [57] or [79], which are the standard references on this topic). It provides a
written approximation to an informal lecture given on this topic by the author at
the 1999 PCMI meeting. It was in the informal spirit of the lecture to make many
assertions and allusions without providing details. That spirit may also permeate
this written version, but some attempt has been made to give relevant references
to the literature. In fact, although our coverage of the bibliography is (of course
and inevitably) incomplete, we do mention many of the major papers in the field,
and the final section is devoted to annotating briefly some of those references.

As one might guess, the background and sophistication that is assumed of the
reader varies widely from section to section. A large part of the presentation is
devoted to treating the case p = 2, where many phenomena can be discovered and
investigated via explicit calculation; in these parts of the presentation we assume
comparatively little background. On the other hand, in order to understand the
theory behind the calculations, and the generalization to arbitrary primes p, more
sophisticated ideas (such as the consideration of elliptic curves and modular forms
defined over rings other than fields, as well as the techniques of formal and rigid
analytic geometry) cannot be avoided. Nevertheless, we have attempted to make
the discussion as clear and intuitive as possible; we leave it to the reader and the
references to fortify the intuition with correct mathematics, while the author will
accept responsibility for any lack of clarity.

Acknowledgments: T would like to thank David Ben-Zvi, Robert Coleman, Brian
Conrad and Mike Roth for their helpful comments on earlier drafts of the present
work, as well as Fernando Gouvéa for all his assistance in the TEXnical preparation
of this appendix.

The curve X((2)

All the essential ideas in the p-adic theory can already be seen in the case p = 2,
and this case has the merit that one can easily perform explicit computations. We
begin by describing some of these, working first over C.

143
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We let H* denote the extended upper half-plane, that is, the union of the usual
complex upper half-plane with the set Q U {oo}. The group SL2(Z) acts naturally
on H* by linear fractional transformations; the quotient is the modular curve of
level one, which (a little idiosyncratically, but for reasons of consistency) we will
denote by Xo(1). It is well known that SL2(Z) acts transitively on QU {oo}, and we
denote the corresponding point of X¢(1) simply by oo, and refer to it as the cusp of
Xo(1) (although of course it is not a singular point; the usage of this term is purely
for historical reasons). Let us also write Y5(1) = Xo(1) \ {oo}. It is well known that
the points of Yy(1) are in a one-to-one correspondence with the isomorphism classes
of elliptic curves over C; the orbit of a point 7 in the upper half-plane corresponds
to the elliptic curve E, := C/A,, where A, is the lattice 2wi7Z + 2miZ. (The 2xi
factors are included just for the purposes of having a good normalization when it
comes to comparing the analytic and algebraic theory of elliptic curves.)

From the algebraic theory of elliptic curves, we know that elliptic curves over
any field are also classified up to isomorphism by their j-invariant. If we write
j(1) := j(E;), then the function j(7) is an analytic function on the open subset
Y5(1), which induces an analytic isomorphism Yy(1) — A!. (This is essentially
tautological if one has a sufficient understanding of X,(1) as a moduli space; alter-
natively, see [133] for a down-to-earth account of j as an analytic function on the
upper half-plane and Y5(1)). The function j(7) has a simple pole at co, and thus
this isomorphism extends to an isomorphism

Xo(1) = P!,

and by virtue of this isomorphism we will also regard j as a coordinate on Xy (1),
and refer to Xo(1) as the j-line.

The curve Xo(2) is obtained by taking the quotient of H* by the congruence
subgroup I'g(2) of SL2(Z). There are two orbits of I'g(2) on QU {oo}, the orbit of
the point 0 and that of the point co. We refer to these points as the cusps of Xy(2),
and we label them simply by 0 and co. We also write Y5(2) = Xo(2) \ {0, c0}.

Of course the points Yy(2) also have an interpretation in terms of moduli of
elliptic curves. Namely, given a point 7 in the upper half-plane, we can form the
curves E; and E,;, and observe that there is an isogeny between them:

(I) E, —s Es,

via the map z mod A, — 2z mod As,. The kernel of this isogeny has order two, and
is generated by the point 7 mod A,. One easily checks that if we modify 7 by an
element of I'g(2) then the isomorphism class of this two-isogeny remains unchanged,
and that in fact the points of Y;(2) are in bijection with the isomorphism classes
of two-isogenies of elliptic curves over C.

We were able to explicitly describe Xo(1) as an algebraic curve: it is the j-line.
Is there a similar description of X((2)? Here is a first attempt: since the orbit of a
point 7 under I'g(2) determines the two-isogeny (I) up to isomorphism, we certainly
know its source and target up to isomorphism, and so to the orbit 7 mod I'y(2) in
Yo(2) we can associate the two complex numbers j(7) and j(27), which do classify
the isomorphism class of E, and Es.. Thus we get a map

(IT) Yo(2) — Yo (1) x Yp(1) = AZ.

Since the source of this map is one-dimensional over C, its image in Y5(1) x Y5(1)
must be a curve, whose equation will express a (somewhat complicated, as it turns



APPENDIX 3. p-ADIC MODULAR CURVES, BY MATTHEW EMERTON 145

out) relation between j(7) and j(27). Such relations are classically called modular
equations. From our point of view this modular equation has two disadvantages:
firstly, it is a little hard to compute explicitly; secondly, the map (II) is not an
isomorphism onto its image — it turns out that the image has singularities. What
this means in modular terms is that for certain special choices of 7, there is one or
more two-isogeny between E. and E,, which is not isomorphic to the isogeny (I).

There is an alternative approach to describing Xo(2) as an algebraic curve,
which we now present. We first proceed algebraically: thus we assume given a two
isogeny ¢ : By — FE» between two elliptic curves over C. Let wy be a regular
differential on Es, and let wy := ¥ *ws be the pulled-back regular differential on E;.

Recall the algebraic definition of modular forms (of level one): a modular form
f of weight k is a “rule” which to any pair consisting of an elliptic curve E and
a non-zero regular differential w on E attaches a number f(F,w) depending only
on the isomorphism class of the pair (F,w), such that for any non-zero scalar X,
f(E,dw) = A *f(E,w), and which “behaves well in families”. (We won’t make
precise the meaning of this statement here; see [38] or [79].)

There is a canonical modular form of weight 12, the discriminant A (see [38]).
Returning to our two isogeny v : £y — FE5, we define

J2 () = 21272(&’&]1)-

(B2, w2)
Note that if we multiply w2 by a non-zero scalar A, both the numerator and denom-
inator of j»(¢)) are scaled by the same amount A~*2, and so j» (1)) remains invariant.
Thus it really does depend only on the isogeny v, and not on the auxiliary choice
of ws.

Now let us interpret this in the analytic picture: on E, = C/A, there is a
canonical differential w, obtained by reducing the differential dz on C modulo A.
(This reduction is possible because the differential dz is invariant under translation
by elements of the lattice A;.) The function

A(T) := A(Er,w;)

is a modular form (in the classical analytic sense explained in [133] for example) of
weight twelve and level one — in fact, it is the unique normalized cuspform of this
weight and level. Its g-expansion is given by the famous formula

A(r)=q JJ (1 -q""

(Recall that in the context of modular forms, ¢ denotes the exponential ¢ = €277,

The product formula for the g-expansion of A is proved in [133], for example.) If

we let 1, denote the isogeny (I), then we see that ¥ ws, = 2w,, and so
A(E;,2w;) A(E;,w;)

. _ 512 —
() ) =2 )~ BEane)

We define the function j, on Yj(2) via the formula

J2(1) = j2(r) w AA((QTT)) = qg 11:[[50:18 :323)24 =q! };[1(1 +q")

This is an analytic function Y5(2) — A!, and from its g-expansion (and the easily
verified fact that ¢ = e2™7 is a uniformizer in the neighbourhood of the point
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oo of Xp(2)) we see that is has a simple pole at the point co of X¢(2). Thus j»
necessarily extends to an isomorphism X(2) — P'. Because of this, we will also
refer to Xo(2) as the jo-line.

Note that we conclude incidentally that any two-isogeny v is determined up to
isomorphism by the invariant j»(¢/). One could also establish this fact (with more
difficulty) by pure algebra, rather than resorting to the consideration of modular
curves, as we did above. However, one motivation for introducing the modular
curves (or moduli spaces in general) is to simplify the proof of results such as this.

Now that we have our algebraic description of X((2) as the jo-line, it will be
interesting to return to and reinterpret slightly the map (IT). The first coordinate
of this map extends to a map Xo(2) — Xo(1), which is the natural map arising
from the inclusion of I'g(2) in SL2(Z). We denote this map by B;. The second
coordinate of (II) also extends to a map Xo(2) — Xo(1), which we denote by Bs.
There is also a natural automorphism of X (2), given by the construction of dual
isogenies: if ¢ : By —» F» is a two-isogeny, it has a dual two-isogeny ¢ : Fs —» Fj.
If ¢ is the isogeny ¢, of (I) then ), is the isogeny E», — E, arising from the
inclusion of lattices As, C A-. This is isomorphic to the two-isogeny ¢_; /5. Thus
we see that constructing dual isogenies yields an automorphism of Y5(2) given by
the formula

-1
7 mod T'y(2) — 5 mod Ty (2).
T

This extends to an automorphism of X¢(2) which interchanges 0 and co. We denote
this automorphism by ws; it is an involution (has order two), and is often referred
to as the Atkin-Lehner involution. The map B- is easily described via ws: since
ws interchanges the source and target of a two-isogeny, we see that By = B o ws.
How do we describe wy in terms of the coordinate j» on Xy(2)? This is an
easy computation, using the modularity properties of A; one could make it either
algebraically or analytically, but the latter is probably simpler:
12,12 12
ja(—1/27) = AA( 1/27) _ 212712 A(27) _ .2 ‘
(=1/7) T2A(7) J2(7)
Note that from this formula we also find the value of jo at the cusp 0: j2(0) =
j2(wa(00)) = 2'%/ja(00) = 0, since j2 has a pole at co.
Here is another question: how do we describe the function B; in terms of the
coordinates j and j»?

Lemma 11.1. The map By : Xo(2) — Xo(1) is described by the equation
(V) joBi = (j2+256)/33.

It is ramified at the point 512 = jo(i) over the point 1728 = j(i) with degree two,
at the point —256 = j2((—1 + /—3)/2) over the point 0 = j((—1 + /—3)/2) with
degree three, and at the point 0 = j2(0) over the point oo = j(oco) with degree two.

Proof. The map from the upper half-plane to Y5 (1) is ramified over two points: the
point j = 1728, corresponding to the SLy(Z) orbit of z = i, with ramification degree
two, and the point j = 0, corresponding to the SL2(Z) orbit of z = (=1 ++v/=3)/2,
with ramification degree three.

The map from the upper half-plane to Y,(2) is ramified over one point, corre-
sponding to the I'g(2) orbit of z = (1 + ¢)/2, with ramification degree two.
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Now I[¢(2) has index three in SLs(Z), and so the map B; has degree three,
and from the preceding two paragraphs we see that the resulting degree three map
Yo(2) — Yp(1) is ramified at the ['g(2) orbit of z = 4, with ramification degree
two, and is totally ramified over the point j = 0.

Of the two cusps oo and 0 on X(2), the cusp oo is unramified over the cusp oo
on X (1) with respect to By (we saw this implicitly above, when we remarked that
q is a uniformizer in a neighbourhood of co on X((2), since it is also a uniformizer
in a neighbourhood of oo on Xy(1)), and hence the cusp 0 must be ramified of
degree two over the cusp oo on Xp(1).

Now pull back j via B; to a function on Xo(2). Since we know the zeroes and
poles of j on Xy(1), as well as the ramification structure of B; above each of these
points, we see that j o By has a pole of order one at 0o, a pole of order two at 0, a
zero of order three at jo((—1+ +/—3)/2), and no other zeroes or poles. Thus j o B;
is a scalar multiple of (j» —a)?/j2, where a = j2((—1 + v/=3)/2). One computes
that

(2 —a)®/j3 =1/q— (24 +3a) + -,
while
j=1/q+T44+ .
(see [133]). Comparing these expressions we find that a = —256 and hence that
joBi = (j2 +256)%/j3.
From this equation we see that —256 = j((—1+4 +/=3)/2) is the point lying over
0=j((-14+/=3)/2), and also that

jo By — 1728 = (ju + 64)(jo — 512)%/3,

and thus, from the above description of the ramification of By, that ja(i) = 512
and j2((1 +4)/2) = —64. We have now verified the asserted formula for the map
B; and also the claims about its ramification. O

The equation By = B o ws allows us to compute that
(V) jo By = ((ja+256)*/j3) 0wy = (2'*/j2 + 256)*/(2'%/j2)* = (j2 + 16)®/jo.

With sufficient enthusiasm, one can eliminate j» from the two equations (IV) and
(V) and thus find the equation relating j o By and j o Bs; this will be the modular
equation which describes the image of the map (IT). Classically, one of the roles of
higher level modular curves such as X((2) (or more precisely, the modular functions
such as jo that are defined on them) was to simplify the shape of the modular
equations. In modern terms, we can see this as being related to the simplification
that comes from replacing a singular curve by its normalization.

Canonical subgroups of elliptic curves over C,

The Lefschetz principle assures us that algebraic geometry is the same when studied
over any algebraically closed field of characteristic zero. In this section we will take
our ground field to be the completion of the algebraic closure of the field of 2-
adic numbers . This field (which is algebraically closed as well as complete) is
denoted Cy; it provides a natural location for conducting 2-adic analysis, just as
C provides a natural location for performing classical analysis. In particular, C,
is equipped with a non-archimedean absolute value, which we denote by | |, and
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which we normalize by the condition that |2| = 1/2 (although the normalization
won’t be important).

By the Lefschetz principle, all the algebro-geometric observations about moduli
of elliptic curves over C which we made in the preceding section apply equally well
to elliptic curves over C;. Thus we see that there is j-line whose non-cuspidal points
classify isomorphism classes of elliptic curves over C,, as well as a js-line, whose
points (other than oo and 0) classify isomorphism classes of two-isogenies between
elliptic curves over Cy. There is an involution wsy of the j»-line given by passing to
the dual isogeny, there are two maps B; and B, mapping the js-line to the j-line,
and all the formulas for wy, B; and Bs that we proved in the preceding section
continue to hold true.

Let us consider the formula (IV) for B;. We can rewrite this in the form

256 256/ 42
joBr  (1+256/j2)%
Now if |j2| > |256], then we may expand the right-hand side of this equation in a
power series, and so obtain the equation

2 > 256\ "
= (B
1

n=1 J2

Since the leading coefficient of this series is 1 (and so in particular is non-zero)
we see by the implicit function theorem (which in this non-archimedean context
is just a formal manipulation of power-series) that B; establishes an isomorphism
between the region |j2| > |256] on the jo-line and the region |j| > |256| on the
j-line. Each of these regions is a disk centred at the point co on the appropriate
line; let us denote them by D, and D; respectively. Thus we see that By induces
a 2-adic analytic isomorphism from D5 to D1, and so has a 2-adic analytic inverse
B; ' :D; — Ds. So what?

Well, in modular terms, this means that if F is an elliptic curve over C; whose j-
invariant satisfies the inequality |j(E)| > |256|, then there is a naturally determined
two-isogeny whose source is E. Equivalently, thinking of a two-isogeny as being
determined by its kernel, we see that there is a naturally determined subgroup of
E of order two. Since E has three distinct subgroups of order two, it seems pretty
remarkable that there is any way to distinguish one of them as being naturally
determined! (Caveat: since the point B, *(j(E)) in Dy only determines a two-
isogeny up to isomorphism, the subgroup of order two is determined only up to the
application of automorphisms of E. Now if E has no automorphism besides +1,
then since these both fix any subgroup of E, we see that the isomorphism class
of the isogeny does determine a well-defined subgroup of order two of E. What
if E has extra automorphisms? The point 5 = 0 (whose corresponding elliptic
curve has six automorphisms) is not in the disk Dy, so it remains to consider the
point j = 1728 (whose corresponding elliptic curve has four automorphisms). Now
if j(E) = 1728, let « denote an automorphism of E of order four. Then a — 1
has degree two as an endomorphism of E, and so « fixes exactly one subgroup of
order two of E, and interchanges the other two. Since B; *(1728) lies in D, we
see by lemma 1.4 and its proof that By '(1728) = —64, and since this is not a
ramification point of By, the kernel of the corresponding two-isogeny must be fized
by a. Thus we see that the caveat is no caveat at all: even taking into account
possible extra automorphisms of E, we see that the map B 1 does determine an
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order two subgroup of every E with j(E) lying in D;.) This subgroup is called the
canonical subgroup of E.

Now we consider the composite ¢ := By o Bi'' : Dy — Xg(1), which is
called the Deligne-Tate map. The map B1_1 is described by a formula of the form
256/B, () = 3.0, a,(256/)", for certain integers a,, such that a; = 1. The
map B, is described by (V), which can be rewritten in the form

256 B, — (16/32)*
j (14 16/372)%
Thus we find that
256 162
-~ — b - 5
¢(7) ,;2 ! ( j )

for some integers b, such that by = 1. Actually, although ¢ is defined on all of
Dy, this power-series formula only converges on the subdisk D} defined by the
inequality |j2| > |16|; it shows that the restriction of ¢ to D} is a degree two map
whose image is D; and which satisfies the formula

(12) 60| = 15
for any point j of Dj.

What is the modular interpretation of the Deligne-Tate map? Well, if we start
with an elliptic curve E such that j(E) lies in Dy, then B;'(j) associates to E
its canonical subgroup C. Then B, associates to the pair (E,C) the target of the
isogeny whose kernel is C, which is just £/C. Thus in modular terms ¢ associates
to any elliptic curve E with j(E) in D; its quotient by its canonical subgroup. Now
if j = j(E) in fact lies in D}, we saw that ¢(j) lies in Dy, and so E/C also has a
canonical subgroup, which pulls back to a subgroup C' of E of order four.

Lemma 11.2. In the above notation, C' is a cyclic subgroup of E

Proof. Either C' is a cyclic subgroup of E of order four, or it is the full two-torsion
subgroup of E. In the latter case, we would see that E/C" is isomorphic to E, and
thus that £ — E/C and E/C — E/C" are dual isogenies.

On the other hand, both of these isogenies have j» lying in D5 (since they are
in the image of B; '), and the first even satisfies |j2| > |16|, because |j(E)| > |16,
and By! preserves absolute values. If |jo| > |16], then [2'2/js| < |256|, and so
212 /45 does not lie in Dy. Thus they cannot be dual isogenies, and we have proved
the lemma. |

More generally, if we let Dgn) denote the disk in the j-line determined by

the inequality || > [22°"|, then we see that ¢" : D\ — Dy, and that as a
consequence if E is an elliptic curve over C; for which j(E) lies in DYL), then E has
a canonical subgroup of order 2”1, which is cyclic (by the easily proved analogue
of lemma 2.2).

The parameter g

This section and the next are a digression on some points of theory which we
will need to understand the preceding calculations better. The subject of our
first digression is an alternative approach to describing elliptic curves, using the
parameter ¢ rather than 7. This leads to a more theoretical interpretation of the
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g-expansion of a modular form, and to a modular interpretation of the cusp oo on
the j-line.

Let us begin by considering the affine j-line Y5(1) over the complex numbers.
If 7 is a point in H its image in Yy(1) corresponds to the elliptic curve E, =
C/(2miTZ + 2miZ). We can take this quotient in two steps, by noting that the
exponential function induces an isomorphism C/27miZ — C* (where C* denotes
the multiplicative group of non-zero complex numbers.) Under the exponential,
the lattice 2miTZ + 2miZ has image equal to the cyclic subgroup ¢% of C*, where
q = €2™7. Thus we can describe E, as the quotient C* /¢%. Thinking of C* as
a cylinder of infinite length (which it is topologically), this is just the familiar
description of a torus as being obtained by gluing together the ends of a finite
length cylinder (where in our case, the finite length cylinder will be a fundamental
domain for the action of ¢” on C*), as in the following picture:

glue these ends together

fundamental domain for multiplication by g on C*

We will use this description of elliptic curves to obtain a geometric description
of the g-expansions of modular forms. We begin with a discussion of differentials.
Let z denote the coordinate on C and ¢ the coordinate on C*, so that ¢t = e*. Then
the differential dz on C (which is invariant under the action of 27iZ by translation)
descends to the differential dt/t on C*, and since this differential is invariant under
the action of ¢Z by multiplication, it descends to a differential on C* /¢”.

Let D* denote the punctured open unit disk, consisting of those complex num-
bers ¢ such that 1 > |g| > 0. As ¢ ranges over all elements of D*, the elliptic
curves C* /g% form a family of elliptic curves lying over D*, and the differential
dt/t on C* descends to a relative differential on this family. Denote this family of
elliptic curves by Erate, and this relative differential by wrage. If f is any modular
form of some weight k, then we may evaluate f on each member of the family, and
thus obtain a function on D*. More succinctly, we evaluate f on the elliptic curve
Erate over the base D* to obtain an element f(Erate,w) of the ring of functions
on D* (necessarily holomorphic — this is a consequence of the condition that f
behave well in families). But such a function is just a convergent power-series in
q, and this is precisely the g-expansion of the modular form f. Thus the existence
of g-expansions of modular forms is related to the existence of the family of elliptic
curve FEr.e over D*, equipped with its canonical relative differential wrage.

We now turn to an analysis of the cusp oo in Xo(1). As 7 tends towards the
point oo in the boundary of H*, the value of ¢ tends to zero. Thus in the preceding



APPENDIX 3. p-ADIC MODULAR CURVES, BY MATTHEW EMERTON 151

description of E, the circumference of the finite cylinder is remaining fixed, while
its length is tending towards zero. What happens when 7 reach the point co? One
way to describe what happens is to remember that the circumferential circle of this
cylinder, and the circle obtained by gluing the endpoints of a longitudinal interval,
represent two independent generators of the fundamental group of E,. What we
just observed is that as 7 goes to 0o, one of these loops stays a fixed length, while
the length of the other tends to zero. This makes it reasonable to think of the point
T = oo as corresponding to the curve obtained by completely shrinking one of these
loops to a point, as in the following picture:

The indicated generator of the fundamental group is pinched off to zero

In short, the point co on X(1) corresponds to a rational curve with one node.
In fact one can show that there is a canonical way to extend the family of elliptic
curves Frate over the punctured disk D* to a family of curves over the (unpunc-
tured) open unit disk D whose fibre at ¢ = 0 is the above rational nodal curve.

If one is working over a field K different from C, the above analytic construction
of the family Fr,te is not available. However, one can construct in an analogous
way an elliptic curve Erate over the field K ((g)) (which one thinks of as the ring of
functions on the formal punctured disk), equipped with a canonical nowhere-zero
differential wrate.- Furthermore, the j-invariant of Erage is an element of K((q))
given precisely by the usual formula for j as a function of ¢ [38, 79]. Letting
Gy, denote the multiplicative group over K((g)), one can even describe Erate as
a quotient G,, /¢%, in a suitable geometric sense, and (if ¢ denotes the coordinate
on Gy;,) wrate 1s obtained by descending the differential dt/t on G,,. Finally, the
elliptic curve Erate extends to a curve over the ring K{[g]], whose fibre over ¢ = 0 is
anodal curve. (See [39] for the rather technical details of the construction of Erate
over K[[q]] and even its construction over Z[[¢]]. With regard to this, note that it is
quite important that the Tate curve over K[[q]] for any field K is obtained from a
given elliptic curve defined over Z[[g]], and also that, when K = C, the Tate curve
over the formal power-series ring C[[q]] is ‘the same’ as the analytic Tate curve over
the open unit disk D described in the preceding paragraph; that is, the power-series
in Z[[g]] which appear in the Weierstrass equation for the Tate curve converge on
the open unit disc D, and so describe an analytic family of elliptic curves over D,
which is the analytic Tate curve described above. These two facts allow one to use
analytic reasoning over C to draw conclusions about the Tate curve which can then
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be applied in other situations, for example in the p-adic analytic context that we
will consider below.)

One can unify the treatment of elliptic curves and singular curves of the type
that correspond to the cusp j = oo by introducing the notion of generalized elliptic
curve [39]. Since such a uniform treatment is possible, at various points in the
following text the conceptual distinction between elliptic curves and rational nodal
curves will become a little blurred.

If f is any modular form over K then one defines the g-expansion of f to be
the element of K ((q)) obtained by evaluating f on the pair (Erate, Wrate) [38, 79].
The g-expansion principle asserts that if f and g are two modular forms of the
same weight having the same g-expansion, then they are equal. This is essentially a
corollary of the fact that any function on a Zariski open subset of Y5 (1) is determined
by its resriction to the formal punctured disk around the cusp j = oo. (More
algebraically, and perhaps more precisely, any localization of Kj] injects into the
fraction field K(j), and thus into K((gq)); the point is that K[j] is an integral
domain, for any K, or scheme-theoretically speaking, that Y5(1) is geometrically
irreducible and reduced.) (See [79] for the details.) The usual requirement of the ¢-
expansion of a modular form, that it lie in k[[g]] rather than just £((g)), in the light
of this section corresponds to the fact that modular forms extend from functions on
elliptic curves to functions on generalized elliptic curves (and so can be evaluated
on the fibre of Erate over the point ¢ = 0, for example) [39].

The Hasse invariant

In this section we recall briefly the theory of the Hasse invariant of elliptic curves
in positive characteristic. We will need to treat elliptic curves defined over rings
other than fields. Thus we let p be a prime and R a ring of characteristic p.

Let E be an elliptic curve over R. Recall that there is canonically associated
to E another elliptic curve E(® and a canonical isogeny 7 : £ —» E®) of degree p,
the Frobenius. Furthermore, if w is a nowhere-zero regular differential on E, then
it induces canonically a nowhere-zero regular differential w® on E(®).

The easiest way to explain these constructions is to note that given E and w
we can find (at least locally over R) a Weierstrass equation

y2 +arry +azy = 3+ a2x2 + a4 + ag
for E such that w = dz/(2y + a1 + az). Then E® is given by the Weierstrass
equation

y® + alzy + aby = 2° + abx® + alx + af,
the differential w(® is equal to dz/(2y + a¥x + af), and the isogeny 7 is the map
(z,y) = (27, y7).

Let us suppose that E and w are given as above, and let 7 be the dual isogeny

to 7. Then we can construct two differentials on E®): the nowhere-zero regular

differential w(?), and also the pulled-back differential (7)*w. Define A(E,w) to be
that element of R such that

() w = A(E,w)w®.
If we multiply w by a unit A of R, then we see that (Aw)® = APw(®) and con-

sequently A(E,\w) = A1"PA(E,w). Thus A is a modular form of weight p — 1 in
characteristic p.
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Now suppose that R is a field of characteristic p. In this case, although the
value of A(E,w) depends on the choice of both E and w, the property of A(E,w)
being zero or non-zero depends only on FE, independent of the choice of w. If it is
non-zero, we say that E is ordinary; if it is zero, we say that E is supersingular.
It is relatively easy to determine the supersingular j-invariants modulo any prime
p. There are only finitely many isomorphisms classes of such curves; in fact their
j-invariants all lie in the finite field F,». Furthermore, there is a precise formula
for their number, as well as a precise formula for a polynomial of which their j-
invariants are the solutions (see [74]).

The remainder of this section is devoted to calculating the g-expansion of the
Hasse invariant. Recall from the preceding section that the Tate curve Erage in
characteristic p is the quotient (in an appropriate sense) of the multiplicative group

Gy, over F,, ((g)) by the cyclic subgroup ¢Z. Since the multiplicative group is already

defined over [F,, we see that in computing ESF’;)te we just have to raise ¢ to the pt*

power, and so E(Tpa)te is isomorphic to the quotient of G,, by the cyclic subgroup

q"%?, the Frobenius isogeny is given by ¢ mod ¢% + t mod ¢P%, and its dual 7 is just
the natural map Gy, /q¢?Z — Gy, /q”. Recall that wryte equals dt/t, so that w(T’;)te is
again dt/t, and also (#)*wrate = dt/t. We conclude from this that A(Erate,dt/t) =
1. In other words, the g-expansion of A is just the constant 1!

Note that this would be quite impossible in characteristic zero: the only mod-
ular forms over C with constant g-expansions are those of weight zero. On the
other hand, it is the fact that the weight p — 1 modular form A and the weight
zero modular form 1 have the same g-expansion which gives rise to the possibility
of congruences of modular forms of different weights, and the beautiful theory of
p-adic families of modular forms. (See the discussion and references in the guide to
the literature given below.)

Return to X(2)

In this section we try to shed some theoretical light on the calculations of section
2, to pave the way for the discussion in the case of a general prime p.

Let O denote the ring of integers in C,, that is, the ring of elements r for which
|r| < |1]; geometrically, O is the closed unit disk of C,. The open unit disk of
elements r such that |r| < |1] is the maximal ideal m of the valuation ring O, and
the quotient field k of O by m is an algebraic closure of the field F», which we denote
by k.

Reducing modulo m extends to a map from the projective j-line over C; to
the projective j-line over k, which we call the specialization map. This map has
the following modular interpretation: if E is an elliptic curve such that j(E) lies
in O then E has a model with coefficients in O with good reduction modulo m,
and the reduction of j(F) modulo m is just the j-invariant of the reduction of this
model module m. On the other hand, if j(E) € C; \ O then any model of E over O
has singular reduction modulo m, and the reduction of j(E) modulo m is the point
00, which as we saw in section 3 corresponds to isomorphism class of a generalized
elliptic curve which is singular. Finally, the point co on the j-line corresponds to
the singular generalized elliptic curve over Cy, any model over O of which certainly
has singular reduction modulo m, and the point co certainly reduces to the point
00.
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Let us (as is customary) extend the phrase ordinary reduction to include either
good ordinary reduction or bad reduction. (One should really require bad multi-
plicative reduction. However, C, is algebraically closed, and so any F with bad
reduction has a model with multiplicative reduction.) Since j = 0 is the unique
supersingular j-invariant modulo 2, we see that the closed disk |j| > |1| is the set
of j-invariants in Xy (1) having ordinary reduction. We denote this disk by Xo(1)"
(h is for Hasse). The complement of Xo(1)" in X(1) is the open disk |j| < |1|, and
consists of the set of j-invariants having good supersingular reduction. We call this
the supersingular disk in Xo(1).

An examination of equations (IV) and (V) shows that the preimage of Xo(1)"
under both B; and B, is equal to the union of the two disks |j2| > 1 and |j2| < |2!2].
We denote the former disk by Xo(2)"% (because it contains the cusp co) and the
latter by Xo(2)? (because it contains the cusp 0); their union we denote simply by
Xo(2)". Note that Xo(2)" is preserved by ws, and that ws interchanges X(2)%
and Xo(2)E. The fact that X,(2)" is preserved by w, (which is equivalent to the
fact that Xo(1)" has the same preimage under either B; or By) reflects the fact
that the property of being ordinary or supersingular is an invariant of an isogeny
class of elliptic curves in characteristic two.

The complement of X(2)" in Xo(2) is the open annulus |1| > |ja| > |22]. Its
points correspond to those two-isogenies whose source (or equivalently target) has
good supersingular reduction. We refer to it as the supersingular annulus in Xo(2).
Here is the picture:

0
The jo-line, drawn as a Riemann sphere, with the supersingular annulus marked

The disk X(1)" is contained in the disk D; on which B, ' is defined, and we
see that B; ' restricts to yield an isomorphism Xy(1)"» 5 X(2)" ; in particular,
every elliptic curve with ordinary reduction has a canonical subgroup.

We can characterize the disk X(1)" as the set of j-invariants whose reduction
modulo m has non-zero Hasse invariant. The rest of this section is devoted to

finding an analogous description of the larger disk D;.
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Let E4 denote the weight four Eisenstein series on SLy(Z), whose g-expansion
is

Ey=1+240)  o3(n)q",

n=1

where o3(n) = Z d®. Recall that this modular form is actually well-defined in all
d|n

characteristics (see [38], where it is denoted c4) and that the j-invariant satisfies
(indeed is defined by) the equation j = Ej /A.

If E is an elliptic curve over C; with good reduction, and w is a differential on
E with non-zero reduction modulo m, then for any modular form f over C; we may
compute f(F,w), and the absolute value | f(E,w)| is independent of the choice of w
(because any two such w differ only by multiplication by a unit of ©). Thus we are
entitled to write simply |f(E)| in place of |f(E,w)|. For example, A(E,w) must
be a unit in O (since it reduces to the discriminant of the reduction of E, which is
non-zero), and so |A(E)| = [1], yielding the formula

_ |Ei(E)|

=|E{(E)|.

Hence we see that |j(E)| > |256] if and only if |E4(E)| > |28/3].

We now wish to relate E4 to the Hasse invariant. The Hasse invariant A is a
modular form of weight one defined modulo 2. Thus A* is a modular form of weight
one defined modulo 8, whose g-expansion is the constant 1. (The point being that
if  is a number well-defined modulo 2, than z* is well-defined modulo 8.) On the
other hand, F; reduces to a modular form modulo 8 whose g-expansion is also equal
to the constant 1 (because 8 divides 240). Thus by the g-expansion principle, we see
that E, = A* mod 8. Thus |E4(E)| > |28/3| if and only if |A(E)|* > |28/3| (because
|28/3] > |8], and so the second equality can be checked after reducing modulo 8,
where A* makes sense) if and only if |A(E)| > |2%/3| (because |22/3] > |2|, and
so the second inequality can be checked after reducing modulo 2, where A makes
sense). Here |A(E)| is denoting the valuation of the Hasse invariant of F reduced
over O/2 (which is non-Noetherian highly non-reduced local ring!), not E reduced
over k = O/m.

Thus we see that the annulus |1| > |j| > |256] consists precisely of those j-
invariants for which the corresponding elliptic curve E satisfies |A(E)| > |22/3|. We
may think of these as the j-invariants of elliptic curves with “not too supersingu-
lar” reduction modulo two (in the words of [79]; recall that the annulus |j| = |1]
corresponds precisely to the elliptic curves having good ordinary reduction), and
so the disk D; of elliptic curves consists of those elliptic curves having not too su-
persingular reduction (in the preceding sense) along with the elliptic curves having
bad reduction.

The theory for arbitrary primes p

In this section we explain the generalization to an arbitrary prime p of the results
presented above in the case p = 2. Let C, denote the completion of the algebraic
closure of @, let O denote its ring of integers, and let m denote the maximal ideal
of 0.
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We let Yp(p) denote the modular curve whose points parameterize p-isogenies
between elliptic curves, and Xg(p) its completion. Over C one can construct Xg(p)
as the quotient H* /T'o(p), and so see that it has two cusps, 0 and co. As p increases
the genus of Xo(p) also increases, and in particular Xo(p) is not a rational curve
unless p = 13 or p < 11. Thus one cannot in general describe Xy(p) by a single
parameter, as we described X((2) by the parameter jo.

Nevertheless, Yp(p) is an affine curve, and so it has an affine ring, which is
generated by parameters which classify p-isogenies up to isomorphism (and which
can be constructed explicitly via modular forms). By the Lefschetz principle, we
see that we may equally regard Yy(p) as a curve over C,, since the moduli problem
of classifying p-isogenies will depend on the same invariants whether solved over C
or over C,. Then Xy (p) will be the completion of Yy(p), a smooth projective curve
over C,.

The process of passing from an isogeny to its dual yields an involution of Xo(p),
which we denote by w,. Passing to the j-invariant of the source of an isogeny is a
morphism Bj : Xo(p) — Xo(1). We let By denote the composition B; o w,,.

We let Xo(1)" denote the set of j-invariants in Xo(p) corresponding to ellip-
tic curves with ordinary reduction (that is, either bad reduction or good ordinary
reduction). The complement of X,(1)" in X(1) is a disjoint union of disks: each
disk is a congruence class modulo m of j-invariants which are congruent to a par-
ticular supersingular j-invariant in characteristic p. We refer to these disks as the
supersingular disks in X(1).

We let Xo(p)" denote the preimage of Xo(1)" under B;'. Just as in the case of
p = 2, and for the same reason (that being ordinary or supersingular is an isogeny
class invariant in characteristic p), Xo(p)" is invariant under w,. Furthermore, it
is the union of two connected components which are interchanged by w,,, which we
label Xo(p)" (the component containing co0) and Xg(p)? (the component containing
0), and the restriction of B; to Xo(p)%, is an isomorphism onto X(1)*. (In order
to interpret connected component in a more than intuitive sense, one must use
the language of rigid analytic geometry.) The complement of Xo(p)? and Xo(p)?
in Xo(p) is a disjoint union of annuli, each the preimage under By of one of the
supersingular disks in Xo(1). We refer to these as the supersingular annuli in Xo(p).
There is the following picture that goes with this discussion, in which one thinks of
Xo(p) as being obtained by gluing together two copies of the “sphere with holes”
Xo(1)" (in the guise of Xo(p)" and Xo(p)?) via the supersingular annuli:
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supersingular annuli

Xo(p) drawn as a union of two “spheres with holes”
glued along the supersingular annuli

To prove all the facts just stated, one must study the modular curve Xy(p) as
a scheme over Z,, as in [39, 85]. The assertions then follow in a fairly standard
fashion from the known structure of Xo(p) over Z,; see the discussion and references
in [25].

For now, note that since B; : Xo(p)", — Xo(1)" is an isomorphism, it has an
inverse B; ' : Xo(1)" — Xo(p)", and thus any elliptic curve with ordinary reduction
is equipped with a canonical subgroup of order p. Just as in the case of p = 2, there
is a larger set D; containing Xo(1)" to which the map By ' extends, and which we
now describe.

Let A denote the Hasse invariant in characteristic p. If E is any elliptic curve
with good reduction, we may consider its reduction modulo p (which is an elliptic
curve over the ring O/p), and the inequality |A(E)| > |p?/(P*Y)| makes sense, since
|pP/(P+1)| > |p|. Define D; to the the subset of Xg(1) consisting of the set of points
in Xo(1)" together with those j-invariants of elliptic curves having good reduction
whose Hasse invariant satisfies this inequality. Then just as in the case of p = 2, the
map Bl extends to a map B1_1 : D1 — Xo(p) which is an isomorphism between Dy
and its image Dy. If j(E) lies in D, then the map B, ' endows E with a canonical
subgroup of order p.

Let D§n) denote the disk which is the union of X (1)" and those j-invariants of

good reduction whose corresponding elliptic curve satisfies |A(E)| > [pt/?"~ #+1)],
Just as in the case p = 2, the Deligne-Tate map ¢ := By o Bfl is a degree p map
from D{" onto D" "), and in particular if j(E) lies in D" then E has a canonical
cyclic subgroup of order p™.

When written in terms of the uniformizing parameter ¢ at co the Deligne-Tate

map has the form ¢ — ¢P. We will give a rather lengthy explanation of this fact,
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which will lead us toward an explanation of the existence of the Deligne-Tate map
itself.

The Deligne-Tate map corresponds in modular terms to taking the quotient of
an elliptic curve E by its canonical subgroup. Let us first try to understand why it
is that the Deligne-Tate map is defined on the formal neighbourhood of the cusp oo
on Xo(1). In other words, why does Erate have a canonical subgroup? Or again,
why is there a map By ! inverse to By defined on the formal neighbourhood of co?

This form of the question we can answer: the map B; is a unramified at the
point oo on Xo(p), and so induces an isomorphism of the formal neighbourhood of
00 in Xo(p) with the formal neighbourhood of 0o in Xg(1). The map B; " is simply
the inverse to this isomorphism. The existence of B; " means that the Tate curve
Etate = Gp,/q” is equipped with a canonical subgroup of order p. To compute
this subgroup, we will look at the analytic picture over C. (This is valid, since the
curves Xo(1) and Xo(p), the projection By, the formal section B! of B; on the
formal neighbourhood of j = oo, and the Tate curve G,, /¢”, are all defined over
Q, and thus so is the resulting subgroup of order p in G,,/¢*. To determine this
subgroup, it suffices to compute over the overfield C of Q, where, as observed above,
one can use analytic methods; the information we get is then perfectly applicable
to the overfield C, of Q that we are actually interested in.)

If 7 is a point in the upper half-plane then the image of 7 in X(p) is the isogeny
E. — E,; given by z mod A; — pz mod A,;. The kernel of this isogeny is the

2mi
group My, /Z. Exponentiating this description of the isogeny, we see that it can
p

also be described as the map C* /¢Z — C* /qPZ given by t + t?, whose kernel is
the image of the group p, of pth roots of unity in Gy, /q%.

We conclude that the canonical subgroup of Etae = Gy, /q” is the image of
tp in G, /q”. The quotient of Gy, /g% by this group is isomorphic to Gy, /¢P%Z, and
thus is a Tate elliptic curve with parameter ¢?. Hence in terms of the parameter ¢
around the cusp oo, the Deligne-Tate map is given by the formula g — ¢P.

The above argument actually provides the key insight as to the existence of
canonical subgroups in general. Let us first explain this for elliptic curves over C,
having bad (multiplicative) reduction. First note that such curves are parameter-
ized by the disk |j| > |1] in Xo(1). The usual power-series relating j and ¢ (that
is, ¢ = 1/j + 744/4% + -- -, which has integer coefficients) shows that ¢ provides
an analytic isomorphism of the disk |j| > |1| in Xo(1) with the open unit disk in
C,. Since the power-series defining the Tate curve have coefficients lying in Z, we
may specialize them at any point ¢ in this open unit disk to obtain an elliptic curve
Cy/ q”, whose j-invariant will be that value of j corresponding to our given choice
of g. Thus the elliptic curves over C, having bad reduction are obtained as special-
izations of the Tate curve at points of the open unit ¢-disk (this is Tate’s theory
of uniformization of elliptic curves with multiplicative reduction). We may evalu-
ate the formal section B; L at any such point, and since this evaluation commutes
with specialization, our preceding calculation with the Tate curve shows that the
canonical subgroup of the curve C;/ q” will simply be the image of the subgroup
pp of C.

If E is an elliptic curve over C, with good ordinary reduction, then E does
not admit a description in terms of the Tate curve, but the situation is almost as
good. Let E denote a model for with good reduction modulo m. Then one finds
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that the formal group of E (thought of as a formal group over 0) is isomorphic to
the formal multiplicative group G (This is a consequence of the fact that the
reduction modulo m of each of these formal groups is of height one, so that they are
isomorphic over k, together with a Newton’s method/Hensel’s lemma argument,
which allows one to lift this isomorphism to an isomorphism over 0.) Now the
p-torsion in G is just the group pp, and so this isomorphism yields a copy of p,
as a subgroup of E. This is the canonical subgroup of E.

To describe the canonical subgroup of a non-ordinary elliptic curve E whose
j-invariant lies in D; is more difficult. One examines the formal group of E (whose
reduction modulo m is now of height two) and uses the bound on the Hasse invariant
of E (which one knows by virtue of the assumption that j(E) lies in D) to construct
a canonically determined subgroup of this formal group of order p. The details can
be found in [79].

p-adic modular forms

Recall again the algebraic definition of a modular form of weight & and of level one
defined over the field C,: it is a rule that attaches to a pair (E,w) consisting of an
elliptic curve and a non-zero regular differential defined over C, a number f(E,w)
which satisfies the weight k transformation rule and which behaves well in families,
including those that include generalized elliptic curves among their fibres. From
now on we will refer to such forms as classical modular forms.

A p-adic modular form of weight k is such a rule which is defined only on those
pairs (E,w) for which E has ordinary reduction (that is, as we said above, has either
bad or good ordinary reduction modulo m). Thus any classical modular form also
gives rise to a p-adic modular form, but there are also many p-adic modular forms
which are not classical modular forms. For example, if p = 2 and E has ordinary
reduction, then E4(E,w) # 0, and so E4(E,w)” ! is well-defined. Thus E, ' is a
2-adic modular form of weight -4. Another way to construct p-adic modular forms
for any prime p is to notice that ordinary elliptic curves have canonical subgroups
of order p" for all n, and so any classical modular form on Ty(p™) gives rise to a
p-adic modular form of level one.

The space of all p-adic modular forms of weight &k (for some fixed p and k)
is a p-adic Banach space, and just as in the classical theory this space has Hecke
operators acting on it. Unfortunately, the action of these operators is rather hard
to control, and one does not get, and cannot expect to get, a very good spectral
theory. Thus there is not a very good theory of p-adic Hecke eigenforms.

To deal with this, one looks at a more refined type of p-adic modular form.
An overconvergent p-adic modular form is a rule of the usual type which is defined
on those pairs (E,w) for which j(E) lies in D§") for some n. (The n is fixed for
any particular overconvergent form, but may vary from form to form.) All our
examples of p-adic modular forms given above are actually overconvergent modular
forms: for example, we saw that Fj is never zero on the disc D; in X(2), and
so B ! is defined on that disc. Also, any classical modular form on Ty(p™) for

some n yields an overconvergent modular form defined on DYL), since the elliptic
curves with j-invariant in this region are precisely those which have a canonical
subgroup of order p™. Here is an example of a p-adic modular form which is not
overconvergent: the “weight two Eisenstein series of level one” is the g-expansion
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By =1+ 24377 0(n)q", where o(n) = 3, d. This is not a classical modular
form at all (it doesn’t transform correctly under the substitution 7 — —1/7), but
is the g-expansion of a p-adic modular form for every p (see [79], in which it is
denoted by P), which is not overconvergent for any prime p [31].

One can again define Hecke operators acting on overconvergent modular forms,
and one finds that something special happens. If one works with the Hecke operator
U, (which on g-expansions is defined by Uy,(},, ang™) = >, anpq™)) rather than
Tp, then there is a good theory of Hecke eigenforms, because the operator U), is a
completely continuous (or, in alternative language, compact) operator on the space
of overconvergent modular forms, and so has a good spectral theory. More precisely,
for any non-zero A € C,, there is a finite-dimensional space of overconvergent
modular forms on which U, has eigenvalue A. This space will be preserved by the
Hecke operators Ty (as £ ranges over all primes different from p), and to construct
Hecke eigenforms with Up-eigenvalue A it suffices to diagonalize these commuting
operators on this finite-dimensional vector space.

The reason that U, is completely continuous is the following: recall that the
Deligne-Tate map is given in terms of the parameter ¢ by the formula ¢(q) = ¢”.
Thus one sees that the operator U, can be described geometrically via the ¢race of
the Deligne-Tate map. More precisely, it is 1/p times this trace. It is simplest to
explain this for U, acting on modular forms of weight zero, which is to say modular
functions. Then an overconvergent modular function is simply an analytic function
f on one of the regions Din). We claim that

for any point j € Dgn). To see this, it suffices to verify the formula for those j lying

in the residue disc about oo, where we can compute in terms of ¢; it will follow in
general by analytic continuation. The claim then follows from the above formula
for the action of U, on g-expansions, together with the following simple piece of
algebra:

Z Zanqm = Zanpqn-
n

1
p ¢'P=q n

(See [79] for a precise form of this argument.) Why does this formula imply that

U, is completely continuous? Well, note that if j € Dgn) and ¢(j') = j, then

. +1
]/ c D£n )

the proper subregion DYLH), and such restriction operators are always completely
continuous. (This is Montel’s theorem from complex analysis being applied in the
(simpler) p-adic setting.)

The preceding discussion shows that the fact that the Deligne-Tate map is
defined on the regions D%n) which extend some way into the supersingular annuli is
fundamental to obtaining a good spectral theory for overconvergent p-adic modular
forms. This explains the importance of the Deligne-Tate map in the theory of p-
adic modular forms, and hence why we have devoted our efforts in this appendix
to describing the ideas behind the construction of this map.

. Thus computing U, (f) involves restricting f from the region Dgn) to
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Guide to the literature

This final section contains a brief review of the literature on the p-adic theory of
modular curves and modular forms, which I hope will be helpful to someone trying
to enter the field. I have tried to present as accurate an account of the development
and current state of the field as I can, within the limits of my own understanding
of these matters. I apologize in advance for any omissions or oversights that I may
inadvertently have made.

The p-adic aspects of the theory of modular curves that we have discussed
in this appendix seem to make their first appearance in the literature in [43], in
which Dwork constructs and studies “by hand” the Deligne-Tate map on the region
D;. He states that the existence of this map was conjectured by Tate (based on a
calculation for p = 2; I don’t know if it was a similar calculation to that of section 2
above) and first proved in general by Deligne. In subsequent articles [44, 45] Dwork
studied the spectral theory of the completely continuous operator U, on the space
of overconvergent modular forms of level zero. One of the points emphasized in
[45] in particular is the importance of restricting ones attention to overconvergent
forms if one hopes to obtain a reasonable spectral theory.

In an independent line of research, Swinnerton-Dyer [150] began the system-
atization of the theory of congruences of g-expansions of modular forms (a subject
which seems to have begun with the work of Ramanujan), by studying the ring of
modular forms modulo p. This work is also reported on in [131]. In [134] Serre
extends these results to develop a theory of congruences of modular forms modulo
arbitrary powers of p, and introduces the notion of p-adic modular forms.

In [79] Katz gives a systematic presentation of the p-adic geometry of the
modular curves, including the construction of canonical subgroups of “not too su-
persingular elliptic curves” (which construction he attributes to Lubin) and the
consequent construction of B ! and the Deligne-Tate map, as well as of the theory
of congruences of modular forms modulo p. The results of this article, and the
later article [81] (which extends the techniques of [79] to define generalized p-adic
modular functions, a notion that includes as a special case the p-adic modular forms
of [79] and [134]), subsumed most of those of Dwork, Serre and Swinnerton-Dyer
mentioned above, and also generalized them to modular forms of arbitrary level.

However, although [79] in some sense unified the various existing p-adic the-
ories, the applications of these theories were in two different directions. On the
one hand the papers [80, 82, 83, 134] used the theory of congruences of modular
forms to construct p-adic analytic families of modular forms (essentially families of
Eisenstein series) and hence to construct p-adic L-functions (which appeared as the
special values of these Eisenstein series, either at the cusp co or at certain special j-
values corresponding to complex-multiplication elliptic curves). On the other hand,
the papers [150, 151] were concerned with using the same theory of congruences
not to construct families of modular forms, but rather to understand the image of
the Galois representations attached to Hecke eigenforms (as constructed in [37]).
Thus their main concern was not congruences between arbitrary modular forms,
but the possible congruences that could arise between Hecke eigenforms. This was
something that was not dealt with in the theory of [81], and this may go some way
to explaining the remark on this paper made in the introduction of [151].
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Studying properties of Galois representations via congruences of modular forms
turned out to be a very fruitful idea. One key direction of research was the inves-
tigation of congruences between cuspidal Hecke eigenforms and Eisenstein series.
This is the main theme of the seminal paper [94], and formed the basis for a suc-
cessful attack on the so-called main conjecture of Iwasawa theory over the field Q,
beginning in [118], continuing in [159], and culminating with the proof of the main
conjecture in [105]. The investigation of possible congruences among the cuspi-
dal eigenforms themselves proved to be an equally important topic, a discussion of
which would unfortunately take us too far afield, and which is provided by Ribet’s
article in this volume.

In Hida’s papers [71, 70] the properly p-adic aspect of the theory of congru-
ences made its resurgence. In these pivotal papers Hida connected the study of
congruences of eigenforms and the associated Galois representations with the study
of p-adic families of modular forms by constructing p-adic analytic families of p-
adic Hecke eigenforms and attaching to them p-adic analytic families of Galois
representations. (See also [106] for a discussion of Hida’s construction and a more
refined analysis of these Galois representations.) The main technical constraint on
Hida’s results is that they only construct families of ordinary eigenforms; that is,
eigenforms whose U,, eigenvalues are p-adic units.

The influence of Hida’s theory was enormous. It allowed a simplification of the
proof of the main conjecture of Iwasawa theory, by rephrasing it as the question
of analyzing the intersection locus of the Eisenstein family with the cuspidal part
of Hida’s family. By extending Hida’s theory to the context of Hilbert modular
forms, Wiles was able to prove the main conjecture for arbitrary totally real fields
[160]; this harks back to Serre’s study of p-adic L-functions as the constant term
of families of Eisenstein series. Other developments included the construction of
families of p-adic L-functions attached to Hida families of cuspforms [64, 88, 96].
Greenberg and Stevens [64] used these L-functions to prove the weight two case of
the conjecture of Mazur, Tate and Teitelbaum [104]. (See also [65], which presents
the main ideas of their argument in a simplified setting.) of p-adic modular forms,
Hida’s work also motivated Mazur to develop his theory of deformations of Galois
representations [97] (for more on which, see the main body of this article!), which
proved decisive for the further development of the theory of p-adic modular forms.

In [57] Gouvéa used Mazur’s theory in order to associate a p-adic Galois repre-
sentation to each p-adic modular form, whether ordinary or not. This work marked
the beginning of line of research aimed at constructing p-adic analytic families of
p-adic Hecke eigenforms and Galois representations, analogous to those constructed
by Hida, but in the non-ordinary situation. That such families should exist was the
principal conjecture of [61]. This work also raised a number of questions related
to overconvergent p-adic modular forms, refocusing attention on an aspect of the
p-adic theory that had languished since the appearance of papers of Dwork cited
above. The p-adic analytic viewpoint favoured by Dwork reemerged in a series
of papers by Coleman [25, 26, 27, 28]. The first of these papers relates to the
conjecture of [104], while the second and third show that an overconvergent p-adic
eigenform whose Up-eigenvalue is not too divisible by p (in a sense depending on
the weight of the form in question) is necessarily classical (extending the analo-
gous result in the ordinary case, due to Hida [70], and hence answering one of the
questions of [57]).
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The current course of research in the theory of p-adic modular forms has been
set by the papers [28] and [23]. In the first of these papers, Coleman analyzes the
variation of the spectral theory of the U, operator on overconvergent p-adic modular
forms as a function of the weight and hence constructs p-adic analytic families of
Hecke eigenforms, in particular proving in a qualitative form the conjectures of
[61]. In [23] this construction is globalized to construct for each prime p a p-adic
rigid analytic curve called the eigencurve. This is, roughly speaking, the universal
parameter space for p-adic analytic families of overconvergent Hecke eigenforms of
finite slope (that is, whose U,-eigenvalue is non-zero; the slope of a Hecke eigenform
is the p-adic valuation of its Up-eigenvalue). The deformation theory of Galois
representations plays a key role in the construction of the eigencurve, and the
universal family of finite-slope eigenforms comes equipped with a p-adic analytic
family of p-adic Galois representations.

With the construction of the eigencurve, it appears that the various directions
of research that instigated the development of the theory of p-adic modular forms
have achieved synthesis. The overconvergent forms are understood as being the
necessary “glue” that binds classical Hecke eigenforms together into analytic fami-
lies. Furthermore, the existence of positive slope families will certainly have many
number-theoretic applications. One such example is [148], in which Stevens devel-
ops a theory of p-adic L-functions in the context of Coleman’s families, and uses
them [149] to prove the higher-weight case of the conjecture of [104] (in the more
precise form stated in [25]).

Yet the construction of the eigencurve raises as many questions as it answers.
For example, while the structure of Hida’s families of ordinary forms is very precisely
understood, the structure of the higher-slope parts of the eigencurve is essentially a
mystery (the references [24, 47, 147] provide some information on a small part of
this structure for certain small values of p). Relatedly, the quantitative aspects of
the conjectures of [61] remain unresolved; all that is known are some very special
cases dealt with in [24, 47, 147].

Another question is that of the existence of p-adic analytic families of eigenforms
of infinite slope. Such forms, whose U,-eigenvalue vanishes, aren’t accessible via
the standard spectral theory techniques available for the study of the completely
continuous operator U,. One natural question that arises in this context is: are
there infinite slope forms that can be written as the limit of finite slope forms?
Such forms would correspond to “punctures” in the eigencurve, which would be
filled in by the limiting infinite slope form. Coleman [29] has shown that forms
obtained by twisting finite slope forms with the Teichmiiller character are of this
type. In the same reference, Coleman reports on a computation of Stein suggesting
that some non-twist infinite slope forms might also be of this type. As to whether
infinite slope forms move in p-adic families, some computations for forms on I'y(4)
[46] suggest that the answer could be yes, but essentially nothing is known in this
direction.

One of the most intriguing and general questions raised by the construction of
the eigencurve is that of the intrinsic Galois-theoretic interpretation of the Galois
representations that it parameterizes (these are just the Galois representations at-
tached to overconvergent p-adic Hecke eigenforms, and this problem was already
posed in [57]). In [23] it is shown that the eigencurve is the rigid analytic Zariski
closure (in an appropriate ambient space, which is essentially a deformation space
of Galois representations) of those points corresponding to classical modular forms.
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The Galois representations associated to such forms are conjecturally characterized
as being those which are potentially semistable (see [53] and the references contained
therein for a discussion of this conjecture and the notion of potential semistability).
However no analogous intrinsic characterization of the non-classical points on the
eigencurve is known, even on the conjectural level (see [86, 87] for some investiga-
tions in this direction). Finding such a description of the eigencurve, which would
not depend on the “extrinsic” construction via the theory of overconvergent p-adic
modular forms, is related to the problem of generalizing the construction of the
eigencurve to other settings. For a discussion of what such settings might be, and
the possible relations to Iwasawa theory and a general theory of p-adic L-functions,
see [102].
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