Algebraische Zahlentheorie 2 — Übungsblatt 12

Sommersemester 2018

Prof. Dr. G. Böckle Dr. A. Conti

Besprechung: Di 24.07.2018 in den Übungen

Sei K ein lokaler nicht-archimedischer Körper, $\pi_K \in O_K$ ein Primelement, $\mathfrak{p}_K := \pi_K O_K$, k der Restklassenkörper und p die Charakteristik von k. Sei $\overline{U}_K^n := U_K^n/U_K^{n+1}$ und seien

$$\iota_K^0 \colon \overline{U}_K^0 \to k^{\times}, \bar{\alpha} \mapsto \alpha \mod \pi_K O_K$$

und

$$\iota_K^n \colon \overline{U}_K^n \to k, ((1 + \pi_K^n \alpha) \mod U_K^{n+1}) \mapsto (\alpha \mod \pi_K O_K)$$

die Isomorphismen aus Kapitel 3 der Vorlesung.

- **36.** Aufgabe (1+1 Punkte, Unverzweigte Erweiterungen): Sei $L \supset K$ eine endliche unverzweigte Körpererweiterung mit Restklassenkörper k_L , so dass $[L:K] = [k_L:k]$. Sei $\pi_L := \pi_K$. Bezeichne $\bar{}$: Gal $(L/K) \to \text{Gal}(k_L/k)$, $\sigma \mapsto \bar{\sigma}$ den kanonische Isomorphismus. Für $n \ge 0$ induziert $\sigma \in \text{Gal}(L/K)$ einen Automorphismus auf \overline{U}_I^n , den wir mit σ_n bezeichnen. Zeigen Sie:
 - (a) Für $n \ge 0$ gelten $\bar{\sigma} \circ \iota_n = \iota_n \circ \sigma_n$ für $n \ge 0$ und $N_{L/K}U_I^n \subset U_K^n$.

Bezeichne $N_n \colon \overline{U}_L^n \to \overline{U}_K^n$ für $n \ge 0$ die von $N_{L/K}$ induzierte Abbildung.

(b) Es gilt $\iota_K^0 \circ N_0 \circ (\iota_L^0)^{-1} = N_{k_L/k}$, und für $n \ge 1$ gelten $\iota_K^n \circ N_n \circ (\iota_L^n)^{-1} = \operatorname{Spur}_{k_L/k}$. Insbesondere gilt $N_{L/K}U_L^n = U_K^n$ für $n \ge 0$. **Hinweis:** Verwenden Sie ohne Beweis, dass $N_{k_L/k}$ und $\operatorname{Spur}_{k_L/k}$ surjektiv sind.

Sei im Weiteren $L \supset K$ eine zyklische Galoiserweiterung von Primzahlgrad ℓ und $G = \operatorname{Gal}(L/K)$. Sei $(G_s)_{s \ge -1}$ die höhere Verzweigungsfiltierung (in unterer Nummerierung), und sei $t := i_{L/K}(\sigma)$ für $\sigma \in G$ ein Erzeuger von G, so dass $G = G_t$ und $G_{t+1} = \{e\}$. Sei $\psi := \psi_{L/K}$ die Herbrand-Funktion.

- 37. Aufgabe (1+1+1+1 Punkte, Verzweigte zyklische Erweiterungen): Sei $m = (t + 1)(\ell 1)$. Zeigen Sie:
 - (a) Die Funktion ψ hat Steigung 1 auf dem Intervall (-1, t) und Steigung ℓ auf $\mathbb{R}_{>t}$.
 - (b) Für die Differente $\mathfrak{d} = \mathfrak{d}_{L/K}$ gilt $\mathfrak{d} = \mathfrak{p}_L^m$.
 - (c) Es gilt Spur_{L/K} $\mathfrak{p}_L^n = \mathfrak{p}_K^{r_n}$ mit $r_n = \lfloor \frac{m+n}{\ell} \rfloor$. Vergleiche: AZT 1, Aufgabe 21.
 - (d) Für $x \in \mathfrak{p}_L^n$ gilt $N_{L/K}(1+x) = 1 + \operatorname{Spur}_{L/K}(x) + N_{L/K}(x) \pmod{\operatorname{Spur} \mathfrak{p}_L^{2n}}$.

Sind für ein $n \ge 0$ die Inklusionen $N_{L/K}U_L^{\psi(n)} \subset U_K^n$ und $N_{L/K}U_L^{\psi(n)+1} \subset U_K^{n+1}$ gezeigt, so bezeichne stets $N_n : \overline{U}_L^{\psi(n)} \to \overline{U}_K^n$ die von $N_{L/K}$ induzierte Abbildung. Sie $\pi_K := N_{L/K}\pi_L$ für ein Primelement $\pi_L \in \mathcal{O}_L$. Sei $\theta_n : G \to \overline{U}_L^t$ wie in Aufgabe 10, Blatt 3.

- **38. Aufgabe (1+1+1 Punkte, Zahm verzweigte zyklische Erweiterungen):** Gelte t = 0, d.h., L ist zahm verzweigt über K. Man kann stets π_L so wählen, dass $\pi_K = \pi_L^{\ell}$ gilt. (Warum?) Zeigen Sie:
 - (a) Für $n \ge 0$ gelten $N_{L/K}U_L^{\ell n} \subset U_K^n$ und $N_{L/K}U_L^{\ell n+1} \subset U_K^{n+1}$.
 - (b) Es gilt $\iota_K^0 \circ N_0 \circ (\iota_L^0)^{-1} : k^{\times} \to k^{\times}, \alpha \mapsto \alpha^{\ell}$, und $0 \longrightarrow G \xrightarrow{\theta_0} \overline{U}_L^0 \xrightarrow{N_0} \overline{U}_K^0$ ist linksexakt.
 - (c) Für n > 0 gilt $\iota_k^n \circ N_n \circ (\iota_l^{\ell n})^{-1} : k \to k, \alpha \mapsto \ell \alpha$, und insbesondere ist N_n ein Isomorphismus.

39. Aufgabe (1+2+1+2+1 Punkte, Wild verzweigte zyklische Erweiterungen): Gelte t > 0, d.h., L ist wild verzweigt über K und $\ell = p$. Zeigen Sie:

- (a) Es gelten $N_{L/K}U_L \subset U_K$ und $N_{L/K}U_L^1 \subset U_K^1$, sowie $\iota_K^0 \circ N_0 \circ (\iota_L^0)^{-1} : k^{\times} \to k^{\times}, \alpha \mapsto \alpha^{\ell}$.
- (b) Sei n > 0, sei $x \in \mathfrak{p}_L^{\psi(n)}$ und definiere $\delta_{n < t} := 1$ für n < t und $\delta_{n < t} := 0$ für $n \ge t$. Dann gelten $N_{L/K}(x) \in \mathfrak{p}^{\psi(n)}$ und $\mathrm{Spur}_{L/K}(x) \in \mathfrak{p}_K^{n + \delta_{n < t}}$. Insbesondere gelten

$$N_{L/K}(1+x) = \left\{ \begin{array}{ccc} 1 + N_{L/K}(x) & (\text{mod } \mathfrak{p}_K^{n+1}), & \text{falls } n < t, \\ 1 + \operatorname{Spur}_{L/K}(x) + N_{L/K}(x) & (\text{mod } \mathfrak{p}_K^{n+1}), & \text{falls } n = t, \\ 1 + \operatorname{Spur}_{L/K}(x) & (\text{mod } \mathfrak{p}_K^{n+1}), & \text{falls } n > t. \end{array} \right.$$

- (c) Für n > 0 gelten $N_{L/K}U_L^{\psi(n)} \subset U_K^n$ und $N_{L/K}U_L^{\psi(n)+1} \subset U_K^{n+1}$.
- (d) Für n > 0 ist die Abbildung $\iota_K^n \circ N_n \circ (\iota_L^{\psi(n)})^{-1}$ von der Form $\alpha \mapsto a_n \alpha + b_n \alpha^p$ mit $a_n \in k^\times$ für $n \ge t$ und $a_n = 0$ für n < t, und $b_n = 0$ für n > t und $b_n = 1$ für $n \le t$. **Hinweis:** Um $a_t \ne 0$ zu zeigen sollte man $N_t \circ \theta_t = 0$ überlegen.
- (e) Die Sequenz $0 \longrightarrow G \xrightarrow{\theta_t} \overline{U}_L^t \xrightarrow{N_t} \overline{U}_K^t$ ist linksexakt, und N_n ist ein Isomorphismus für $n \in \mathbb{N}_0 \setminus \{t\}$.

Die Übungsblätter sowie weitere Informationen zur Vorlesung Algebraische Zahlentheorie 2 finden Sie unter

http://www.iwr.uni-heidelberg.de/~Gebhard.Boeckle/AZT2-SS2018/