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Abstract

Let K be a finite extension of the p-adic field Q, of degree d, let F be a finite field of
characteristic p and let D be an n-dimensional pseudocharacter in the sense of Chenevier of
the absolute Galois group of K over the field F. For the universal mod p pseudodeformation
ring RS of D we prove the following: The ring ﬁ% is equi-dimensional of dimension dn?+ 1.
Its reduced quotient E% w4 contains a dense open subset of regular points 2 whose associated
pseudocharacter D, is absolutely irreducible and non-special in a certain technical sense that
we shall define. Moreover we will characterize in most cases when K does not contain a p-th
root of unity the singular locus of Spec R5 . Similar results were proved by Chenevier for
the generic fiber of the universal pseudodeformation ring R%‘i" of D.
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1 Introduction

Let p be a prime number and let K be a finite extension of Q,, of degree d = [K : Q,] with absolute
Galois group Gk = Gal(K*8/K). In [Chell], Chenevier establishes the following results on the
rigid variety A, of continuous pseudocharacters of G of dimension n with coefficients in leg.

Theorem (Chenevier). (a) The open locus of reqular points of X, contains X'*.
(b) The open subvariety X C X,, of irreducible pseudocharacters is Zariski dense in X,,.
(c) The variety X, is equidimensional of dimension dn® + 1.

Moreover [Chell] gives a precise description of the singular locus of the varieties &, in terms
of representation-theoretic data. Note that from any continuous pseudocharacter x of dimension
n of Gx with coefficients in Q;lg, one can reconstruct a semisimple n-dimensional continuous
representation p,: G — GLn(leg), that is unique up to conjugation; one calls = irreducible if
pq is irreducible.

The above results can be reinterpreted as results on the generic fibers of universal rings for pseu-
dodeformations of a fixed residual pseudocharacter of G as introduced by Chenevier in [Chel4].
Note that we use the term pseudocharacter for what Chenevier in [Cheld] calls determinant law
and what is called pseudorepresentation in [WE13]; the term Taylor-pseudocharacter we use for
what in [Tay91] was called pseudocharacter. Pseudocharacters of dimension n of a group I' are cer-
tain polynomial laws in the sense of [Rob63] that model the formal properties of the characteristic
polynomial of n-dimensional representations of I'. The simpler notion of Taylor-pseudocharacter
refers to maps that model the formal properties of the trace of n-dimensional representations of
I'. The two notions agree for coefficient fields of characteristic zero, or of characteristic p > 2n;
see [Cheld, Prop. 1.29]. Taylor-pseudocharacters have some defects in characteristic p < n. Pseu-
docharacters behave well independently of the characteristic (and n). Also a pseudocharacter D of
Gk of dimension n with coefficients in an algebraically closed field & is the pseudocharcter attached
to a semisimple representation pp: Gx — GL, (k) that is unique up to conjugation.

Let now F be a finite field of characteristic p with ring of Witt vectors W (F) and let .,Zl\rw([p) be
the category of Noetherian W (IF)-algebras with residue field F. Let D be a continuous pseudochar-
acter of Gk of dimension n with values in F. If I is sufficiently large, D can be thought of as the
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1 INTRODUCTION

pseudocharacter attached to a representation p: Gx — GL,,(F), i.e., morally as the characteristic
polynomial law attached to p. It is shown in [Ch<‘14] that any residual D admits a universal pseudo-
deformation ring R“““’ that represents the functor ATW ) — Sets, that to any object R of AT’W(F)
assigns the set of pseudocharacter Dp of Gk with values in R and with residual pseudocharac-
ter D. The above theorem now asserts that the absolutely irreducible locus of Spec R%ﬂ"[l /D]
is dense open in Spec RJ"[1/p] and contained in the regular locus of Spec R5"[1/p], and that
R%‘i"[l /p] is equidimensional of dimension dn?+1; here z in X %“iv := Spec R%ﬁ" with correspond-
ing residue field x(x) and pseudocharacter D, is called irreducible if the semisimple representation
Pa = Pp, @, (et G = GLn (k(z)™®) is irreducible.

univ

The present work concerns the special fiber of Spec R“‘“V, i.e., the mod p reduction Ry = =

R%‘“’/( ) of the ring R%“V and the corresponding special fiber scheme XD := Spec RDn Y. Our
main results are natural analogs of the assertions in the above theorem of Chenevier. Before giving
them, we point to some differences to the results of Chenevier and introduce some notions we
introduce to deal with them.

Let ¢, € K¥8 denote a primitive p-th root of unity. A first simple observation is that, already
for n = 1, the space X5 = has empty regular locus, Whenever (p lies in K. To address this
problem, we study the natural determinant map det: X5 D — X 32:\;3, D — det D, where det D
is the constant coefficient of the pseudocharacter D; i.e., if D is attached to an n-dimensional
representation p, then det D is attached to the 1-dimensional representation det p. Eventually we

show that det is formally smooth when restricted to a dense open subset of X . This subset is

(slightly) smaller than the open of locus (X ‘g‘gd) of irreducible points of X 55 ™. There is a closed

subset of the irreducible locus (of relatively small dimension) spanned by points that we call special,
such that when we restrict det to the dense open subscheme of non-special irreducible points of

Uan
explicit and well-understood, base change to reduced structures gives us access to Y%rt v 4 for which
we deduce Chenevier’s dimension formula.

irr

. 7 univ . . - univ
it is formally smooth. Because X 4., and its induced reduced subscheme X jo( 5 04 are

There are several equivalent ways to describe the locus of special points of (X En?;d)l”, see

Subsection 5.1 and some basic results on Clifford Theory explained in Section 2; each has its

benefits. Let ad,, denote the adjoint representation of p,, and let adgw be its subrepresentation

on trace zero matrices. Let = be a dimension 1 point of (X an?éd)“r. The deformation theory as

introduced by Mazur in [Maz89] yields, that the map det is formally smooth at z if H*(G, adlo)m)
vanishes. We call such an z special, if H?(G, adgm) =+ O. An important observation is that special
points are induced from representations of smaller dimension of the group G+ for K’ a suitable
extension of K. This link and induction give a strong dimension bound for the special locus
(X5 yPlin (X er\éd)‘”, i.e., the Zariski closure of the special points of dimension 1 therein. More
precisely, one has: If ¢, ¢ K, then z is special if and only if p, is induced from a representation
of Gg(c,); if ¢ € K, then x is special if and only if there exists a degree p Galois extension K’
of K such that p, is induced from a representation of Gx+. To state our main results, we also
abbreviate (X5 )**Pel .= (X5 )™ (X quv)Spd and (X ‘]ijv)red XEllv (X5 b,

Theorem 1 (Theorem 5.5.1, equidimensionality). The following assertions hold:
(a) (X “mv)“'SPC1 C YEHV is open and Zariski dense.
(b) If , ¢ K, then (Xumv)“'SpCl is reqular.

(c) If ¢, € K, then (X gnv)gzpd is regular, and (X2 )res s empty.
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(d) Y%ﬁv is equidimensional of dimension [K : Qpn® + 1.

Theorem 2 (Theorem 5.5.5, singular locus). If , ¢ K, then the following hold:
(a) The closure of (X5 1V)51[’Cl in X* lies in (Xlz)mv)bi“g.
(b) If n>2 or [K : Q] > 1, then (X quv)er C (Y%ﬂv)smg.

(c) Ifn =2, K=Q,, andz € (Xumv)red is a direct sum D1 @ Dy of 1-dimensional characters
D;, then x € (Xumv)smg if and only if Dy = Dy(m) for m € {£1}.

Theorem 3 (Theorem 5.5.7, Serre regularity). The ring ﬁ%:i;;d satisfies Serre’s condition (Ra)?!,
unlessn =2, K = Qq and D is trivial.

We in fact determine the exact dimension of (X ‘]ijv)red and (X quv)Spd in Lemma 5.5.2 and
Corollary 5.5.3. From this, depending on n and [K : Q,], one can in general establish Serre’s
condition (R,,) for some mg , > 2.

It is certainly a foundational and natural question to study the equldlmensmnahty of X lfjmv

to better understand some geometric properties of the special fiber space X 15 D , extending [Chel1]
to the special fiber. However our true motivation was the expectation, that the equidimensionality

, and

proved here should help proving expected ring theoretic properties of the universal lifting ring R%]
attached to any continuous homomorphism p: Gxg — GL,,(IF) by Kisin in [Kis09] as an important
technical device to understand deformation rings as introduced in [Maz89] by Mazur. There should
be a bootstrap argument to deduce from the dimension for X5 = found here, that R%’ is flat
over W (F) of expected relative dimension (d 4+ 1)n?. This in turn would give the local complete
intersection property of Rg, the normality of the special fiber ring R%’ /(p) and it should allow one
to deduce a bijection between the irreducible components of R%' and of Rgetﬁ, as expected from
computations by us in the case n = 2 in [BJ15], and then in further cases in [CDP15], [Bab19]
and [Iye20]. This in turn might prove, in light of recent results of [EG19], the Zariski density of
crystalline points, and thereby to complete work of many others, notably [Nak14, § 4] by Nakamura,
extending previous important work of Chenevier, in the case where p is absolutely irreducible, and
of [Iye20] when 7 is trivial, under some technical hypotheses on K, p and n. This program has now
been completed in work of the first author with A. Iyengar and V. Paskiinas in [BIP21] and [BIP22].

Let us give some further ideas of the proofs and indicate some of the auxiliary results and
techniques developed in this article. Our overall strategy is similar to [Chell]. But we face new
phenomena that have to be dealt with.

Above we already mentioned special points x of (X qur\;d)l” They can exist when the cyclotomic
character has finite order, i.e., on the special but not the generic fiber. At such = the representa-
tions p, is induced from a representation of Gk for a proper cyclic extension K’ of K of degree
dividing n. So it is important for us to define an induction for pseudocharacters. This we work out
in Subsection 4.6; our present approach incorporates significant improvements due to the referee.
Using induction of pseudorepresentatlon we show that the locus of special representations can be
covered by finitely many X7 where the D' are continuous pseudocharacters of Gk for the K’
just mentioned, and in particular they are of dimension n/[K" : K| < n. Now in an inductive proce-
dure, the space X 55 is known to have dimension (d[K’ : K])(n/[K’ : K])?4+1 = dn?/[K’ : K]+1,
and this is much smaller than the lower dimension bound dn? + 1 that we establish for (all compo-

—>univ

nents of ) X5 . In particular, the special locus is nowhere dense in Y% v 1~ Another operation on

1see Definition A.1.3



1 INTRODUCTION

pseudocharacters that we introduce in Subsection 4.5 is twisting by 1-dimensional representations.
We use it to prove the closedness of the special locus in the case (, ¢ K.

Another important ingredient in our inductive argument to establish Theorem 1 is the proof
that every neighborhood of some  in the reducible locus (X 5 )™? contains a point of (X3 )
Here we follow the argument used by Chenevier [Chell, Thm. 2.1], using however étale topology in
place of rigid geometry. The key point in our setting is that étale locally (Y%l lV)red — Y%ﬂ 1?’ is a
closed immersion. Hence if a neighborhood U of some = € (Y%l yred does not intersect X5
the local behavior at z in X5 is similar to that of Y%nl "X Y%HQ " for pseudocharacters such
that D = Dy @ Da, after completion at z. This will ultimately yield a contradiction by comparing
dimensions (of tangent spaces); see Theorem 5.2.1 and its proof. Following a suggestion of the

referee, in Subsection 5.3 we give a second independent proof of Theorem 5.2.1.

irr

irr
)

—- univ

On the technical side, we shall often work with dimension 1 points x € X7 . The set of
these is Zariski dense in Y%] " so they allow us to see all irreducible components. At the same
time, their residue fields k(x) are Laurent series fields over a finite field, and so finite dimensional
k(x)-algebras carry a unique topology compatible with that of k(z). We make use of this in
considering deformation functors at such points. This is especially useful of D, is irreducible or
at least multiplicity free. This technique was introduced by Kisin over p-adic fields. We need to
reprove some basic results, for instance in Subsection 3.3 and Subsection 4.8, building on [Chel4],
[WE18] for pseudodeformations and on [Nek06] for Tate local duality over general coefficient rings
such as k(z) or its ring of integers.

Outline

We now give an outline of this work. Section 2 presents parts of Clifford theory to be used in
Subsection 5.1 when defining and characterizing special points. Section 3 reviews the theory of
deformations of Galois representation in the sense of Mazur with a strong emphasis on result related
to deformation rings at dimension 1 points where the residue field is a local equicharacteristic field.
Section 4 is a detailed review of pseudocharacters following largely [Chel4] with some noteworthy
additions that are crucial for the main results of this work: we consider the locus of reducibility
in the context of pseudocharacters, we introduce twisting and induction of pseudocharacters, and
we give a special treatment to some elementary facts on equicharacteristic dimension 1 points on
pseudodeformation rings.

The final Section 5 contains the proof of the main results of this work, Theorems 1 to 3 on the
special fiber of universal pseudodeformation rings. We follow Chenevier’s proof for the generic fiber
[Chell], and explain how to overcome all complications that arise in the special fiber. Much of these
complications are packed into our definition of special points in Subsection 5.1; see Definition 5.1.2.
Non-special (irreducible) points will take the role of irreducible points in Chenevier’s work; they
describe that part of the irreducible locus of the special fiber of the pseudodeformation space over
which the determinant map is relatively formally smooth.

Subsection 5.1 also contains some technical result on the comparison of universal pseudode-
formation and universal deformation rings over local fields where the residual pseudocharacter is
a sum of two irreducible ones; see Lemma 5.1.6. In Subsection 5.2 we describe the induction
procedure that proves the main result: given a suitable induction hypothesis, we shows that the
reducible locus is nowhere dense. In Subsection 5.4 we show that the non-special points are open
and Zariski dense in the irreducible locus under some inductive hypotheses. By combining the
previous subsections, it is then in Subsection 5.5 straightforward to prove Theorems 1 to 3.
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Let us also note that in an appendix, we provide some results on commutative rings, on algebras
over a field and on absolutely irreducible mod p representations of the absolute Galois group of
a p-adic field. These results are mostly standard and they serve as a convenient reference. In
addition, in Subsection A.4 we prove a variant of an important result of Vaccarino that we use in
the construction of induction for pseudocharacters in Subsection 4.6.

Some notation and conventions

o Throughout we fix a prime number p and a finite field F of characteristic p.

o For any field E we denote by E*# an algebraic closure of F and by Gg = Gal(E*#/E) its
absolute Galois group.

o We write Q, for the p-adic completion of Q and fix an algebraic closure leg of Qp. All
algebraic extension fields of Q, will be considered as subfields of leg .

o We fix a finite extension field K of Q, of degree d = [K : Q)] inside leg.

o Throughout x will denote a finite field of characteristic p or a local field of residue charac-
teristic p. It will take the role of a coefficient field for deformations and pseudodeformations.
If such a coefficient field is meant to be finite, we usually write F.

o For a point = on a scheme X, we write Ox , for the local ring at = and x(z) for its residue
field; the latter is the second way in which the letter x occurs; note that x(x) can be any
field.

o For a complete noetherian local ring R with finite residue field F, we call € Spec R with
corresponding prime ideal p, C R a point of dimension 1 if R/p, has Krull dimension 1. The
residue field x(z) will then either be a finite extension of Q, or of F((z)).

o By a ring, we mean a unital commutative ring. Algebras over a ring A do not need to be
commutative. To make clear that an A-algebra is commutative, we will always speak of it as
a commutative A-algebra.

o The categories Ary and .Zl\rA of certain (pro-)Artinian local A-algebras, that have the same
residue field as A, are introduced at the beginning of Subsection 3.1.

o The category Admy of admissible A-algebras is introduced at the beginning of Subsection 4.4.
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2 CLIFFORD THEORY

2 Clifford Theory

Clifford theory provides a crucial input in determining conditions that characterize the special
points that we will introduce in Definition 5.1.2, building on Lemma 5.1.1. In this section, we
give the representation theoretic background. We also include some results for coefficients that
are not algebraically closed. The results in Subsection 2.2, and most importantly Corollary 2.2.2,
are probably well-known. Those in Subsection 2.3, and in particular Lemma 2.3.1, seem of more
exotic nature to us. We give proofs whenever we could not locate the results in the literature.

Throughout this section, G denotes a (possibly infinite) group and H a subgroup of finite index.
If G is a topological group, we assume H to be open in G. We define N := ﬂgGG/H HY. Tt is of
finite index and normal in G and the largest subgroup of H with this property. If H is normal
then N = H, if G is a topological group then N is open in G. All representations will act on a
free module of finite rank over some ring or field.

2.1 Generalities

Definition 2.1.1. For a representation p: N — GL,,,(A) over a ring A and g € G, we define the
conjugate of p by g as the representation

p?: N — GL,,(A), n+— p(gng™t).

Remark 2.1.2. Conjugation in the sense of Definition 2.1.1 defines an action of G on the set
{[p?] : g € G} of isomorphism classes [p9] of representations p9 of N. Since N acts trivially, the
action factors via G/N and so, up to isomorphism, there are only finitely many conjugates of p.

For the remainder of this subsection, let E denote a field of characteristic p > 0. Unless
said otherwise, any representation will be of finite dimension over E.
The following lemma will be used repeatedly.

Lemma 2.1.3 (Mackey tensor product theorem for induced representations; [CR62, Cor. 44.4]).
Let p and p' be representations of G and of H, respectively. Then p@Ind$ p' = nd% ((Res$; p)@p').

We will also need:

Lemma 2.1.4. Let p be a semisimple representation of H and let v = Res% p. Assume for parts
(f) to (h) that H is normal in G, and so in turn N = H and v = p. Then the following hold:

(a) For any separable field extension F D E the representation p g F is semisimple.
(b) One has Res§ Ind§ p = GageG/H(Res% p)y.

(¢) If T is an irreducible representation of G, then Res](\;,T 1s semisimple, and all irreducible
summands of Res% T are conjugate to one another in the sense of Definition 2.1.1.

d) If [G : N] is not a multiple of p, then Ind$, p is semisimple.
HP
(e) If v is irreducible and if G/N acts freely on {[19]:g € G}, then Ind$ p is irreducible.

(f) The representation Indgp is absolutely irreducible if and only if p is absolutely irreducible
and G/H acts freely on {[p9] : g € G}.

(9) Let p' be a second representation of H. Then Ind$ p = Ind$ p' if and only if

D = D W 1)

geG/H geG/H



2. Some results when p does not divide [G : H]

(h) If p is irreducible in (g), then (1) is equivalent to p’' = p9 for some g € G.

Proof. We denote by V' the E-vector space underlying p. Part (a) is [CR62, Cor. 69.8] with the
ring A from there being the image of F[H| in Endg (V). Part (b) holds by [Ser77, Prop. 22|. Part
(c) follows from [CR62, Thm. 49.2]. For (d) note that p is a subrepresentation of Ind% Res¥ p, and
hence Ind% p is a subrepresentation of Ind§ Res p. By (c) applied to the irreducible summands
of p, we see that Res! p is semisimple. Now the result can be found in [Web16, Ch. 5, Exerc. §].

To prove Part (), let V' C Ind$ p be an irreducible G-subrepresentation. Then by (b) the
representation Resg V' contains 19 for some g € G. As V' is a G-representation, we deduce
v C Res](\;, V' for all ¢ € G. By hypothesis, the v9, g € G/N, are pairwise non-isomorphic, and
hence @ ey v C Res% V. By (b) the left hand side is isomorphic to Res$ Ind$ p, so that for
dimension reasons we must have V' = Indg p-

We next prove Part (f). Because the solution space of a linear system of equations has the same
dimension over its field of definition and over any extension, one has

HomE[N] (P, pg) R Ealg o~ HOmEalg[N] (p ®F Ealg7 pg R Ealg)_

This allows one by base change E — E®# to reduce one direction of (f) to (e). For the converse as-
sume that Indg p is absolutely irreducible. Because Indg is an exact functor, p must be absolutely
irreducible, and hence also p?9 for all g € G. Because Inde p is absolutely irreducible, Frobenius
reciprocity yields

~ ~ (¢)
E = Endgq (Indfl p) = Hompg g (p, Resg Indg p) = Hompge(p, Dgec/ap?)-

Hence p is isomorphic to p? if and only if g € H, and this completes the proof of (f).

We now prove Part (g). Note that by (b) the only if direction is clear. For the other direction,
note first that by [CR81, Lem. 10.12] we have Indg p = Indfl pd for all g € G. Since induction and
direct sum commute, we also have

Ind$ ( @ p?) = @ (Indg p?) = (Indfl p)@[G:H].
geG/H 9€G/H
The same formula applies to o/, and so our hypothesis gives (Ind$ p)®IG:H] = (Ind§ p/)®IGH],
The Krull-Schmidt theorem, see [CR62, Thm. 14.5], now yields Ind$ p 22 Ind$ /. Part (h) follows
from the uniqueness of composition factors and the irreducibility of the p9. O

2.2 Some results when p does not divide |G : H]|

Suppose now that y: G — E* is a character of finite order m, so that E contains a primitive
m-th root of unity ¢ and m -1 € E*. We also set H := ker x, so that H is normal in GG, and note
that pfm = [G : H]. The following is a standard result of Clifford Theory, e.g. [CR62, Thm. 49.2,
Cor. 50.6].

Theorem 2.2.1. Let p: G — GL,(E) be an absolutely irreducible representation such that p =
p® x. Then the following hold:

(a) The order m of x divides the degree n of p.

(b) There exists a Kummer extension E' = E(X/X) of E for some A € EX and an absolutely
irreducible representation p': H — GLy,/m, (E'), such that

pRp B = Indg 0.

8



2 CLIFFORD THEORY

(¢) The representations (p')?, g € G/H, are pairwise non-isomorphic and absolutely irreducible,
and one has Res$ p @p B/ = Dyec )’

(d) If E is local field, G is a topological group and p is continuous, then so is p’.

(e) If in addition to (d), G is compact, then p can be defined over the ring of integers O of E
and p' can be defined over Og:.

Proof. Lacking a precise reference, we give a proof. Let A be an invertible n X n-matrix over F
such that

Ap(9)A™H = x(g9)p(g) for all g € G. (2)

From (2) one deduces A™p(g)A™™ = x™(g)p(g9) = p(g) for all ¢ € G. Since p is absolutely
irreducible, [CR62, (29.13)] implies that A™ = X -1,, for some A € E. Define E' := FE( ¥/)). Let
A= %2 A GL,(E"), so that (2) also holds for A" and also (A’)™ = 1,,. Since m-1 is invertible
in F, it follows, using the Jordan form, that A’ is semisimple. Moreover A’ is diagonalizable over
E’ since FE contains a primitive m-th root of unity.

After a change of basis over E/ we may write A as a block diagonal matrix with diagonal
blocks Aj,..., A, such that for i = 1,...,m each A; is a scalar matrix (*1,, with n; > 0 and
"""" m i =n. Forallge Gandi,j=1,...,m we decompose p(g) correspondingly into blocks
pi.;(g) so that equation (2) turns into

¢ piilg) = x(9)pi;(9)- (3)

Choose g € G such that x(g) = ¢. Then p; ;(g) is zero unless ¢ — j = 1 (mod m). Since p(g) is
invertible, all p;11,:(g) and pum,.1(g) must be invertible and hence square matrices and of non-zero
size. We deduce that all n; are equal, hence non-zero, and hence equal to n/m. In particular, m
divides n, proving (a).

Next, for h € H and for all 4,5 = 1,...,m, equation (3) becomes (*~7p; ;(h) = p; j(h) so that
p(h) = @, pi,i(h) is a block diagonal matrix and each p;;: H — GLy, (), h = p;i(h), is a
representation of dimension n/m. In particular, the restriction satisfies

m
Resfi p@p E' = (D pii-
i=1

We choose p' = p1.1 and consider Ind% p/. By [CR62, (10.8) Frobenius Reciprocity Theorem] we
have
Home (Ind$, o/, p @5 E') = Homp (p', Res$ p @ E') # 0.

Let f: Indg P — p®g E' be a nonzero G-homomorphism. Since p is irreducible, it must be
surjective, and because dimp = n = m - n/m = dimInd¥ p/, its kernel must be zero, so that f is
an isomorphism. Next note that Indg is an exact functor, see [CR81, § 10, Exerc. 20]. Hence p’ is
absolutely irreducible, because p is so. This completes the proof of (b).

Part (c) follows from Lemma 2.1.4(b) and (f). Part (d) easily follows from the continuity of
Res pop E' = @ gec/m(p')?, using that all linear topologies on a finite dimensional vector space
over E’ that are compatible with the topology on E’ are equivalent.

Concerning (e) we only prove the first assertion; the proof of the second the follows from (d).
For this, let V be the E-vector space underlying p and let T' be an Og-lattice in V. The stabilizer
of T is an open subgroup of GL,,(F) and hence, by the continuity of p, the latice T is fixed by an
open subgroup G’ of G. Therefore G/G’ is finite. Thus T' := ﬂgeG/G, gT is an Og-lattice in V,

9



2. Some results when p divides [G : H]

and this lattice is clearly G-stable. Choosing an Og-basis of T”, that is then also an E-basis of V/,
assertion (e) for p is clear. O

Corollary 2.2.2. Suppose that p: G — GL,,(E) is a representation that is absolutely semisimple;
this holds for instance if E is perfect. Then p = p ® x holds if and only if there is a separable
extension E' of E of degree less than m™ - (n?)! and a representation p': H — GLy, /,(E') such that
p@pE' =Ind$ o/ Furthermore, any such p' is absolutely semisimple, and one has Res$; p@p E' =

@gEG/H(pl)g'
Proof. If p®p E' 2 Ind$, p/, then Lemma 2.1.3 implies

(p®p E') ® x = (Indf; p') © x = Ind(p' @ Resf x) = Indf p' = p @p F,

and this implies p ® x = p by [CR62, 29.7].

Conversely, suppose that p & p ® x. After replacing F by a separable extension of degree at
most (n?)!, see Lemma A.2.7 and Remark A.2.8, we may assume that p is an absolutely completely
reducible G-representation over F’, i.e., p = @je]p; for absolutely irreducible representations p}
for j € J. We regroup this decomposition according to orbits under iterated twisting by x. This
gives rise to a decomposition

m;—1
p=D (D rax)™, (4)
iel  j=0

for integers r; > 0, absolutely irreducible representations p;: G — GL,, (E’), and divisors m; of m,
for i € I, so that p; @ x™ = p;, and no p; is isomorphic to py @y’ for some j € {0,...,my —1} and
i’ € I. We have G D H; :=kerx™ D H, [H; : H| = m;, and Resgi X is a character of order m;.
By Theorem 2.2.1 we find Kummer extensions E; of E’ of degree dividing m; and representations
: Hi — GL,,, /m, (E}) such that IndH Pl = p; ®p E.. Let 1y be the trivial representation of H
on E’ Then

m;—1 m;—1 m;—1
@plg)x)@EIE’_IndH ol ® (@X‘)Nlndc ®@ResHX
j=0 j=0

=~ Indy, (p! ® IndfF 15) = Ind§, Indf (ResH pl @ 1g)

=~ Ind§; (Resp pf),
where the second and fourth isomorphism follows from Lemma 2.1.3. Let E” be the composite of
the E! and set p/ := @ieI(ReSH p! @pr E")®7, so that clearly [E” : E'] < m". The first assertion

of the corollary is now evident from the above and from (4). The remaining assertions follow from
Lemma 2.1.4(b) and (d). O

2.3 Some results when p divides [G : H]

Suppose for the remainder of this subsection that p = Char £ > 0. Let V = E™ and let p: G —
Autg (V) be a representation such that the canonical map E — Endg (V) is an isomorphism.

Lemma 2.3.1. Suppose that p is absolutely irreducible. Let H C G be a normal subgroup of index
p and set Vg := Resg p @p E¥&. Then the following hold:

(a) If Vi is reducible, then V @ E% = IndG W for any irreducible submodule W C V.

10



2 CLIFFORD THEORY

(b) If Vi is irreducible, then we have:
1) Any E[G]-module W with ResG W = Res§ V is isomorphic to V.
H H
2) Ind§, Vi is indecomposable, its socle is isomorphic to V @p E*8,
H
(3) V @p E¥# is not induced from any H-module,
4) All irreducible subquotients of Ind$, Vi are isomorphic to V @5 E¥8.
H

Proof. By Lemma 2.1.4(c) we have Vi = @geq/p- W for some irreducible H-module W over E*'8
and some subgroup H* C G with H C H*. Since G/H = Z/pZ, in part (a) of the present lemma,
we must have H* = H, and then the assertion follows from Lemma 2.1.4(e).

We now prove (b). Let W be as in (1). By choosing the same underlying E vector space, we
assume that Res% W = Res$ V. Let g € G be a generator of G/H, and let A, B € Autg(Res$ V)
be the automorphisms given by the action of g on W and V, respectively. Because Resg V is
absolutely irreducible, there exists a non-zero scalar A € E such that B = AA. As ¢gP € H, we find
AP = BP = \PAP. Because Char E = p > 0, we must have A = 1, and so (1) is proved.

For (2), write Ind$ Vi = P, Wi with indecomposable G-modules W;. Let W be an irre-
ducible quotient of W; as a G-submodule. From Lemma 2.1.4(b) and (c¢) and the irreducibility
of Vi, we deduce Resg W/ = Vy for all 4, and by (1) we find W/ = V @ E*8. The following
inequality implies #I = 1 and the uniqueness of W] and thus gives (2):

#1 < dimpus Homa(@ Wi,V @p E*%) = dimpus Home(Ind§ Vi, V @ E™%)

= dimEalg HOI’IIH(VH,VH) = 1,

To see (3) observe that if V ®z E*® was induced, then by Lemma 2.1.4(b) then Vz had to
be reducible. For (4) note that we have Ind Vi = (V @5 E*2) @5 Ind% E. Now clearly the
semisimplification of Ind% E is the trivial module EP, and this shows (4). O

For the remainder of this subsection, we shall also assume that E is a topological field, that
p is continuous and that G is topologically finitely generated, and we let ®(G) = GP[G, G|, so
that G/®(G) is the maximal p-elementary abelian Hausdorff quotient of G, and we set m :=
dimp, G/®(G). We note that the hypothesis on G holds for G = G with K a p-adic field by
[Jan83, Satz 3.6].

In the sequel we shall write End(V) for the cokernel of the natural inclusion E < Endg (V). We
shall relate the non-vanishing of the module of G-invariants Endg (V) of this cokernel to V being

induced from a subgroup of G of p-power index. We assume that p divides n, since otherwise the
trace splits the inclusion E — Endg (V) G-equivariantly, so that Endg (V) = 0 by our hypothesis
E = Endg(V)
Let End; (V) be the subset of A € Endg(V) such that there exists amap Aa: G — E, g+ Aa(g)
with
Vg € G: p(9)Ap(9) ™" = A+ Aa(g)1n- (5)

Again because F = Endg(V), one has the short exact sequence
0 — E =Endg(V) — Endg (V) — Endg(V) — 0. (6)

We write A € Endg(V) for the class of A € Endg (V) under this map. Recall that f € E[T] is
p-linear if f =3, a;TP" and that the set E[T]P1"" of p-linear polynomials in E[T7] is a ring under
addition and composition. The following lemma provides some basic properties of Endf, (V).
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2. Some results when p divides [G : H]

Lemma 2.3.2. Let A be in Endg (V). For A\ € E¥8, let Vy and Vi denote the eigenspace and
generalized eigenspace of A for \. Suppose from Part (i) on that p is absolutely irreducible.

(a) Fach A4 is a continuous homomorphism G — (E,+).

(b) The groups Ha :=KerAg and H, := (\{Ha | A € Endy(V)} contain ®(G).

(c) Aa = Aa(G) C (E,+) is a finite-dimensional F,, vector space.

(d) The multi-set of eigenvalues of A with multiplicities is a torsor under Ay := Aa(G).

(e) The map A,: A — Aa factors via an injective homomorphism
Endg (V) — Homeont (G, (E,+)), A — M.
(f) Endg (V) is a module for E[T]P"™ under (f, A) — f(A) and one has Apay = f o Aa.
(9) If Endg (V) # 0, then there exist A € Endy (V) such that Ay = (Fp,+) and [G : Ha) = p.
(h) The restriction p|g, commutes with A; it preserves Vy and VY for all X € E¥S.
(i) A is semisimple over B8,
(j) One has p @p B8 = Indg‘: Vi for any eigenvalue X\ € E*8 of A.
(k) Over E™& the set Endg, (V) is simultaneously diagonalizable.
(1) Suppose dimg, E > m, then there exists A € Endg (V) with H, = Ha.
Proof. (a) The continuity of A4 follows from that of p. It is a homomorphism because of
A+ Aa(gh)ln=ghAh™ g7 =g(A + Aa(M)1n)g ™ =gAg™" + Aa(h)1n=A+ (Aa(g) + Aa(h))1n.

To see (b) note that the image of A4 is p-elementary abelian because p-1 = 0 in E. By (a)
Hy = Ker Ay O ®(G), and hence H, O ®(G). Part (c) is clear from (a) and (b) since by
assumption, G is topologically finitely generated, and hence so is G/®(G). For part (d) denote by
xa(T) € E[T] the characteristic polynomial of A. Then (5) implies x4(T) = xa(T + Xa(g)) for
all g € G, and this proves (d).

For (e) one easily verifies that ), is the boundary map of cohomology H°(G,Endg(V)) —
HY(G,E) induced from (6); part (a) shows that the target module is Homeont (G, (E,+)); the
cocyle condition is easily verified. Moreover A4 is trivial if and only if A € Endg (V). Hence
A Ag is defined and injective. The homomorphism property is straightforward.

(f) Raising (5) to the power p and using Char(F) = p we find

Vg € Gi : p(9)APp(g) ™" = AP + Aa(g)"1,.

Since Endy (V) is clearly an E-vector space and ), is E-linear, part (f) follows. To see (g), let A
be in Endg, (V) \ E, so that Ay C (E,+) is non-trivial and finite. Let A C A4 be a sub F,-vector
space of codimension 1 and let f be the p-linear polynomial ], ., (7' — A). Then Ay(4) has order
p by (f), and Hy4 has index p by its definition in (b).

In (h), the asserted commutativity is clear from (5); the assertion on the V) and V{ is then
immediate. For (i), choose an eigenvalue A € E*& for which dim V, is minimal. By (c), we have
dimVy - #A4 < n with equality if and only if A is semisimple. Because A and p|y, ®p E#&
commute, the action of H4 preserves Vy. Let Vgas := V ®@p E*8. Frobenius reciprocity gives a
non-zero homomorphism in

Homg (IndgA WA, Vgalg ) & Hompg , (V, Vigais |HA)'
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3 DEFORMATIONS OF GALOIS REPRESENTATION

Since Vgaie is an irreducible G g-representation, it follows that
n < dimInd§, Vy =[G : Ha] - dim V) = #A4 - dim V) < n.

Hence we must have equality and so A is semisimple. For (j), all but the last assertion follow from
the proof for (i).
(k) Using (5) we compute for A, B € Endg, (V) and all g € Gk that

9(AB = BA)g™" = (A+ Aa(9)La)(B+ As(9)1n) — (B+ An(9)L,)(A+ Aa(g)L,) = (AB — BA).

Since E = Endg(V), we conclude that AB — BA is a scalar matrix. We also know that A (and B)
is semisimple. To conclude we may work over E®8 so that we may assume that A has diagonal
form. But then it is elementary to see that AB — BA has entries 0 along the diagonal and hence
this scalar matrix must be zero. It follows that any A, B € Endg(V) commute, and we conclude
using (j).

(1) We need to show that for all A, B € Endy, (V) there exist u, v € EX {0} such that H,a4,5 =
HyN Hp. Let W be the F,-vector space G/(Ha N Hp) and regard A4 and Ap as Fp-linear maps
W — E. Note that d := dimp, W < m. Let B := (b1,...,bq) be an [, basis of W. Suppose also
without loss of generality that dimp, Gx/Ha, dimp, Gk /Hp < d, since otherwise we are done.

For v € F?8 get C, := A4 + vAp. Since the common kernel of A4 and A\p is 0 C W, there
exists v € F?8 such that C, is injective, i.e., such that the vectors (C,b;)i=1,.. 4 are Fp-linearly
independent in E. This means that the Moore determinant of these vectors is non-zero. In other
words, the determinant of the d x d-square matrix with (¢, j)-entry given by (Aa(b;) +vAp (b))P'
is non-zero. As a function of v, this is a polynomial of degree at most (p? — 1)/(p — 1). It is not
identically zero because of its value at v, and hence it can have at most p? — 1 < p™ — 1 zeros.
It follows that for some v/ € F it is non-zero because #FE > p™, and this completes the proof
of (1). O

We will later also need the following particular result:

Corollary 2.3.3. Suppose p is a non-trivial extension of an absolutely irreducible representation
p2 by an absolutely irreducible representation p1. Suppose further that p1 and pa are not isomorphic
and that the p; are not induced from any normal index p subgroup of G. Then Endg(V) = 0.

Proof. Assume on the contrary that we can find A € Endy (V) \ E. We may assume that A4 has
order p by Lemma 2.3.2(g), and we also may assume E = E?®2_ since this leaves dimg Endg (V) un-
changed. Then H4 has index p in G and we have p distinct subspaces V) of Vgaie that are stabilized
by Ha. By hypotheses and Lemma 2.3.1, the restrictions p;|g, are absolutely irreducible. This
already implies p = 2. We also find that the extension of ps by p; becomes trivial when restricted
to H4, and that these restrictions must agree with the two distinct V). It follows by Frobenius
reciprocity that we have a non-zero map IndgA (p2)m,) — p fori =1,2. By Lemma 2.3.1(b)(4) all
simple subquotients of Indg (p2|m,) are isomorphic to py. But this is absurd, since p is non-split
and ps is not a submodule of p. We reach a contradiction even for p = 2. O

3 Deformations of Galois representation

This section recalls and augments the classical deformation theory [Maz89] of Mazur. Throughout
we fix a profinite group G which often is G for K a p-adic field.
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3. Basic categories and functors, and formal smoothness

In Subsection 3.1 we fix the basic categories relevant for all deformations functors that we
shall study. We also recall some results on formal smoothness. Subsection 3.2 recalls Mazur’s
deformation theory and some extensions for residual representations G — GL, (k) where & is a
finite or a local field. Subsection 3.3 studies dimension 1 points on universal deformation rings.
Except for some results on equicharacteristic dimension 1 points, all results are well-documented
in the literature. Subsection 3.4 gives a criterion for the determinant functor to be smooth. For
this we recall Tate local duality for coefficient modules over local fields.

3.1 Basic categories and functors, and formal smoothness

The field x and the ring A: From now on x is either (a) a finite field of characteristic p
that carries the discrete topology, or (b) a local field with its natural topology and with residue
characteristic p. In the latter case & is a finite extension of Q, or a finite extension of the formal
Laurent series field F,,((¢)). Depending on case (a) or (b), we define a topological ring A. In case
(b) we set A = k. In case (a), A is a Noetherian complete local ring with residue field « and
equipped with the topology defined by its maximal ideal mp.

The categories Ar, and .ZTA: By Ara we denote the category of Artinian local A-algebras A
with residue field isomorphic to k and with local A-algebra homomorphisms as morphisms. For any
local ring A we denote by m, its maximal ideal. We regard any object A of Ar, as a topological
ring. In case (a), we give A the discrete topology. In case (b) the ring A is a k-algebra of finite
k-dimension and we give A the unique topology that arises from any structure on A as a normed
k-vector space. This topology on A is relevant whenever we talk about continuous maps to A or
to any GL,(A4). We further define Ary as the category of complete Noetherian local A-algebras
with residue field k and with local homomorphisms as morphisms. Any object of A\TA is a limit
of objects of Ar,. We equip an object A of /TTA with the weakest topology such that all maps
A — A/m}, m > 1, are continuous. In case (a) this simply means that A carries the m4-adic
topology.

In Ary the co-product of two objects A, A’ is their tensor product A ®, A’. For A, A’ € Ary,
the co-product is the completed tensor product AR A’ := hénn A/m% @5 A’/m’,. Note that by
[Gro64, Lem. Ory.(19.7.1.2)] the ring A®xA’ lies again in Ar,. From the discussion around the
Cohen structure theorem in [Stal8, § 0323] one also deduces:

Proposition 3.1.1. Let A € A\TA and h = dim, ma/(mp,m?). Then there exists a surjective
continuous homomorphism in Ara from the power series ring A[[z1,...,zp]] onto A. Moreover h
is minimal with this property.

Further properties of Ary and Ary can be found in [Stal8, § 06GB] and [Stal8, § 06GV].

Functors on Ary and Ary: We follow [Sch68]; see also [Stal8, Ch. 06G7]. By kle] :=
k[X]/(X?) € Arp we denote the ring of dual numbers over k. Recall from [Sch68] that a small
extension in Ary is a surjection f: B — A in Ar, whose kernel ker f is isomorphic to k as a
B-module, and in particular ker f is annihilated by mp and thus (ker f)? = 0.

In the following we consider covariant functors F from Ary or Ary to Sets such that F(k) is a
singleton.

Definition 3.1.2. A covariant functor F: ﬁrA — Sets is called continuous if the canonical map
F(A) — Linn F(A/mY) is bijective for all A € Ary.
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It is straightforward to see that there is a bijection between continuous functors .Z?“A — Sets
and functors Ary — Sets given by restriction. From now on all functors on Ar will be continuous
and we use the same symbol to denote them and their restriction to Ar,. For any B € A\TA we
denote by hp: Ary — Sets the functor which is given by hp(A) := HomAT (B, A). A functor

F: .ArA — Sets is representable if it is isomorphic to hp for some B € .A’I"A
Definition 3.1.3 ([Sch68, Def. 2.2 2.7]). Let F, F': Ary — Sets be functors.
(a) The tangent space of F' is tp := F(k[e]).

(b) A natural transformation F' — F is called smooth if for all small extensions B — A in Ary,
the map F'(B) — F'(A) xpay F(B) is surjective; cf. [Sch68, Def. 2.2].

(c) A pair (A, &) consisting of an object A in Ara and a smooth natural transformation &: ha —
F is called a hull of F' if the induced map tn, — trp on tangent spaces is bijective; note that
by Yoneda £ corresponds to some element of F(A).

Hulls are unique up to isomorphism but in general not up to unique isomorphism. If F is rep-
resentable by some A € Ar, it clearly has a hull. Moreover one has tr = Hom, (ma/(m%,my), x).

Definition 3.1.4 (Formal smoothness). We recall two notions of formal smoothness
(a) A homomorphism Ry — Ra of topological rings with Ry and Rs linearly topologized is called

formally smooth if for every commutative solid diagram

Ry —— A

o

R1*>B

of homomorphisms of topological rings with B a discrete ring and B — A surjective with
square zero kernel, a dotted arrow exists which makes the diagram commute, cf. [Stals,
Def. 07EB]

(b) A morphism p: Y — X of locally Noetherian schemes is called formally smooth at y € Y, if

the induced morphism OX olx) = Oyy of topological rings is formally smooth.

Formal smoothness is related to smoothness of natural transformations between representable
functors:

Proposition 3.1.5 ([Sch68, Prop. 2.5(i)]). Let Ry — Ry be a morphism in Ara and set h =
dim Ry — dim Ry. Then the following assertions are equivalent:
(i) Ry — Ry is formally smooth.
(i) The induced map of functors hr, — hg, is smooth.
(iii) There is an isomorphism Ri[[x1,...,24]] = Rz of Ry-algebras.
If any of (i)-(iii) holds, then h is called the relative dimension of Ry over Rj.
Note that (ii)=-(iii) is from [Sch68] and that (iii)= (1):>(ii) are straightforward. A consequence

of (ii)=(i) of Proposition 3.1.5 is that a morphism in ATA is formally smooth if the lifting property
in Definition 3.1.4(a) holds for all small extensions in Ary.
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3. Mazur’s deformation theory and extensions

3.2 Mazur’s deformation theory and extensions

Our presentation of deformation functors follows Mazur [Maz89] and Kisin [Kis09]. Consider a
continuous representation

7: G — GLy, (k). (7)

We write ad; for Mat, xn (k) together with the action of G induced by p composed with the
conjugation action of GL, (k) on Mat, x, (k). By adg we denote the subrepresentation on trace
zero matrices and by ﬁp the quotient modulo the center k. In the following, for a representation
p into GL,, (A1) and a ring homomorphism A; — Ay we write p ® 4, Ao for the composition of p
with GL, (A1) — GL,(Ay), cf. [Kis03, p. 433].

Definition 3.2.1 ([Gou0l, Defs. 2.1 and 2.2]). Let A be in Arp with residue map A — K.
(a) A lifting of p to A is a continuous homomorphism p: G — GL,(A) with p®4 k = p.
(b) The symbol T',,(A) denotes the kernel of the canonical homomorphism GL,(A) — GL, (k).
(¢) A deformation of p to A is a T',,(A)-conjugacy class of a liftings of p to A.
(d) The deformation functor Dj, or Dy ; if we wish to indicate A, of 5 is defined as

Ds: Arpn — Sets, Ar— {p: G — GL,(A) : p is a deformation of p},

In the following, for a profinite group H and a continuous H-module M we denote by H*(H, M)
the i-th continuous group cohomology of H with coefficients in M. If M is discrete, details can be
found in [NSWO00, Ch. 1]. For other coefficients we refer to the introduction of Subsection 3.4.

The next definition is important in relation to the finiteness of D;(F[e]).

Definition 3.2.2. The following finiteness conditions go back to [Maz89, § 1.1].
(a) A profinite group G has property ®, if H'(H,F,) is finite for all open subgroups H of G.
(b) The representation p satisfies condition ®5 if dim, H'(G,ady) is finite.
Proposition 3.2.3. The following assertions hold:
(a) The profinite group Gk satisfies Mazur’s condition ®,.
(b) If a profinite group G satisfies ®,, then @5 holds for any residual representation p of G.

Proof. Part (a) is immediate from class field theory. If & is finite, then part (b) is well-known;
to deduce it one applies the inflation restriction sequence to G O H := Kerad;. If x is a local
field, the assertion is proved later in Corollary 3.3.6. We invite the reader to check that there is
no circular reasoning involved. O

The versal hull of Dj;: Let p be as in (7). The following result for finite x is due to Mazur,
with an extension due to Ramakrishna. For k a p-adic field, a proof is given in [Kis03, Lem. 9.3]
by Kisin. The proof for local fields of positive characteristic is analogous.

Theorem 3.2.4 ([Maz89, 1.1-1.6], [Gou01, Thm. 3.3, p. 53, Thm. 4.2]). Assuming condition O,
the following hold:

(a) One has tp, = H'(G,ad;), and h := dim, H'(G,ad;) is finite.

(b) The functor Dy has a hull; we write p3*: G — GL,(RX;) for a representative of its versal

deformation and R € Ary for a versal deformation ring of p.
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c¢) If k = Endy p, then D5 is representable; we write p“““’ G — GL,(RY™) for a representa-
p Ap

tive of its universal deformation and R‘m“’ € Ary for the universal deformation ring of p.

d) There is a surjection p: Al[x1,...,z3]] =& RS in ,Zl\m such that Ker ¢ is generated by at
Ap
most dim, HQ(G7 ad;) elements.

(e) If H*(G,ad;) = 0, then the natural map A — R\ is formally smooth of relative dimension h,
or equivalently, the natural transformation Dy — hy, [p: G — GL,(A)] — A is smooth.

Remark 3.2.5. The existence of R} (and of pver) as a profinite topological ring does not require

condition ®5. The latter is needed for the rings to be Noetherian, i.e., to lie in ./Zl\T'A.

ver

We shall later need to understand the change of 5 under maps A— A

Lemma 3.2.6 (Cf. [Wil95, p. 457]). Let A — A’ be a ﬁnite injective homomorphism of complete
Noetherian local rings with finite residue fields k and &', respectively. Let p' == p®, k’. Let Ry be
a hull for Dy 5 and Ras for Das . Then Rpar = Ry @ A

3.3 Deformation rings at dimension 1 points

Suppose « is finite. Then for R in le\rA and we call x € Spec R with corresponding prime ideal
pe C R a point of dimension 1 if R/p, has Krull dimension 1. For such z the field k(z) is either a
finite extension of Q, or of F,,((¢)). It has been first exploited by Kisin, e.g. [Kis03], that points x
of dimension 1 with x(x) D Q, on universal deformation rings can be much easier to understand
than the closed point SpecF. We recall this method and work it out further for dimension 1 points
x with k(z) D F,((¢)). The latter points will be an essential tool in our work.

Let « be a finite field of characteristic p with the discrete topology. Let A be the ring of
integers of a finite totally ramified extension L of W (k)[1/p]. Let p: G — GL,, (k) be a continuous
representation that satisfies 5 with versal deformation

ver G —> GL ( ver)

Consider a continuous homomorphism f: R}; — E of A-algebras for a local field E. Denote by p
the prime ideal Ker f. Then via f the field £ is a finite extension of the fraction field £y of R /p,
and pz™
that pg(G) C GL,(O) for O the ring of integers of E — the latter by using strict equivalence.
Suppose first that E is of characteristic 0, in which case we follow [Kis03, § 9]. Then f factors
via amap f[1/p]: RY%[1/ p] — E which is an L-algebra homomorphism, and F is a finite extension
field of L. We denote by R the completion of RY5[1/p] at the kernel of f[1/p]. Then E is the

residue field of R. From the finiteness of L — E one easily deduces that in fact R is naturally

induces a representation pg: G — GL,(E). We may and will assume that £ = Ey and

a E-algebra. Moreover we have a continuous homomorphism p: G — GL, (R A) induced from pZ*".

Clearly p is a deformation of pg. Using Remark 3.2.5, this provides one with a homomorphlsm

. ver D
P RE’pE — R.

Suppose now that E is of characteristic p. Then F is isomorphic to a Laurent series field &’ ((2))
for a finite extension &’ of the finite field x and with ring of integers O = k/[[z]]. Denote by
po the map pg with the range restricted to GL,(O). It is a deformation of p' := p ®, «’. Let
AN = A®w () W(x'), and consider the map

Lem. 3.2.6 id
fe: R{ o B = ‘//\87%®AEf®F—>EE,r®e»—>f(r).e

17



3. Deformation rings at dimension 1 points

In the present case we define R as the completion of RS, ®xs E at ker fg. By definition, Risa

ver

E-algebra with residue field E. Moreover p7* ® Ry R defines a continuous representation

~

p: G — GL,(R)
which is a deformation of pg. Again this yields a homomorphism
@: ]{frpE — R.

ver

Theorem 3.3.1. The map ¢ is formally smooth. If RY; is universal, it is formally étale, and
hence an isomorphism, by Proposition 3.1.5.

Remark 3.3.2. Before we give the proof, let us explain a difference depending on the characteristic

of E, that will be resolved in Lemma 3.3.5. Suppose that R{°; is a universal ring. Let X /”\r,%" =

Spec R’ and let @ € XX‘%V be a point of dimension one, so that E = k() is a local field.

univ

If E has characteristic zero, i.e., if x lies on the generic fiber of X {7, then R is the completion

Now by Theorem 3.3.1 this completion is isomorphic to the universal

of the local ring O yuniv .

ver

ring Ry”, . and so from the latter one can transfer many ring-theoretic properties to O Xuniv g -
; Y,

—~- univ

If on the other hand E has characteristic p, i.e., x lies on the special fiber X 5 7, then R is

not isomorphic to the completion (/9\yuniv , of the local ring Oguniv . It follows however from
Ap Ap

Lemma 3.3.5 below that we have an isomorphism R 2 @va LTI Via this route, Theorem 3.3.1
A,p Y

ver

allows one again to deduce ring-theoretic properties of OXXniv » from Ry, .
P ’

Remark 3.3.3. In Corollary 4.8.8 we provide an analog of Theorem 3.3.1 for pseudodeformations.

Proof of Theorem 3.53.1. If Char E = 0, then this is [Kis03, Prop. 9.5]. We give the proof if
p = Char E > 0. It closely follows that of [Kis03, Prop. 9.5]. We consider a commutative diagram

Epp 24 (8)

7
g 7
e
\L 7 l
Ve

AT

with A € Arg and I C A is a square zero ideal, with the solid arrows given, and we seek to construct
a dashed arrow g so that the two triangular sub diagrams commute. If Ry,
have to show that the dashed arrow is unique. Note that A and I are finite-dimensional E-vector

spaces. Also, the bottom arrow induces a pair of homomorphism }’f;fﬁ, — A/I and E — A/I,

is universal, we also

where the second one is simply the F-algebra structure map.
By possibly conjugating p by some matrix in I',,(R) we can assume that Pom SRy, R = p.
PE
Following the proof in [Kis03, Prop. 9.5], one shows that there exists an O-subalgebra A° of A

such that
(a) A° is free over O of rank equal to dimg A and A° ®p E = A,
(b) the image of A° under A — E is O, and so A° € Ar

PE

)
(c) the image of p¥er Ry, A lies in GL,,(A°),
(d) the homomorphism R}%"; — A/I factors via A°/I° where I° =11 A°.

18



3 DEFORMATIONS OF GALOIS REPRESENTATION

Write pae for ppo @ Rygr A considered with its image in GL,,(A°). Then p4. reduces to Py ® RS
A°/I° modulo I°, and thus by the versality of R}7", there is a homomorphism g° Ve,r ;= A°
such that p7" @ RS, AP° is strictly equivalent to pao. Let g: R — Abe the homomorphlsm obtamed
from ¢° ® 1d under completlon It is now not difficult to see that both triangles in (8) commute
with this choice of g.

It remains to show the uniqueness of ¢ if R}7~ is universal. The argument in [Kis03, Prop. 9.5]
shows that there is in fact a directed system A5, n € N>, satisfying (a) — (d) such that {J,, 4;, = A.
Now if one has g1, g2 completing the diagram (8) to two commutative diagrams, there have to be
homomorphisms g7, g3 : R37, — A for n sufficiently large that give rise to g1 and g2, respectively.
The corresponding deformations G — GL,(AS) of o' do agree over A and hence they will agree
for n sufficiently large, i.e., they represent the same strict equivalence class. Because R} is

universal, they define the same ring maps g7 = g5 and hence ¢g; = go. O

Applying Theorem 3.3.1 in the simplest non-trivial case will deduce the following corollary that
will be used in the proof of Lemma 3.3.5.

Corollary 3.3.4. Let k be finite, let k' be a finite extension of k and let L = '((s)) be the Laurent
series field over k' with uniformizer s. Let q be the kernel of the multiplication map L @, L — L.
Then X — s® 1 —1® s induces a continuous L-algebra isomorphism

¢: L[X] = L®L := lim(L ®, L)/q".

«—
n

Proof. We first show that 1 is an isomorphism in the case k' = k. Let G = Z be the free profinite
group on one topological generator «y, and let p: G — GL1(k) be the trivial representation given
by v = 1. Because H'(G,x) = & and H*(G,x) = 0, we have R{"Y = A[[T]] for the resulting
universal ring with universal deformation p*: G — GL1(A[[T]]) given by y=1+T.
Let f: R“‘”V = A[[T]] — L be the specialization that is given by reduction mod p composed
with the mJectlon v: K[[T]] = L = k((s)),T — s. The corresponding representation at L is
pr: I' = GLy(L),y — 1+ s, and for its universal ring we find R“m" = L[[X]] with universal
representation

pi: T = GL(L[[X]]), v—14+s+X.

Let R be the completion of R”““’ ®a L = g[[T]] ®« L at the kernel q of the homomorphism
fr: &[[T]] ® L — L that maps g( ) @ h € k[[T]] @ L to g(s)h € L. Under fr the non-zero
elements of x[[T]] ® 1 map to L*, and therefore /{[[ ]| ® L — R extends to k((T)) ®, L — R,
and completion gives an isomorphism x((T))®,L — R. We now invoke Theorem 3.3.1. It asserts
that the L-algebra map

LIX]) = R™Y =5 R = w((T))&L,

that, by its very definition, sends p¥(v) = 1+s+X to (p*®x L)(y) = 1+T®1, is an isomorphism.
Because s on the left is mapped to 1 ® s on the right, we find that X — T ® 1 —1® s. This proves
the assertion on v for k' = k.

To complete the proof, it remains to explain the reduction of a general finite extension «’ D &
to the case k' = k just treated. For this observe that L 22 k/((s)) = x((s)) ® &', so that L®, L — L
can be written as the map

K((s) ®x £((s) @n (K @x &) = K(5), fRgR®a@ B fgap.
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3. Deformation rings at dimension 1 points

Since k' D k is a finite Galois extension, the ring A := k¥’ ®, &’ is isomorphic to the product of
fields (' )["‘l”‘], and A contains a primitive idempotent corresponding to each factor. Under the
multiplication map A ® A — k/, A @ pu — A, all but one of these map to zero. Hence all but one
of these primitive idempotents lie in g, and so they vanish under completion at q. One deduces
L@KL ~ L@HIL and this completes the reduction to x’ = k. O

The following result is needed in our applications of Theorem 3.3.1. Our focus is on the equichar-
acteristic case.

Lemma 3.3.5. Let R be in ﬁm, so that Char R = p, let p € Spec R be a point of dimension 1, so
that dim R/p = 1. Let k(p) = Quot(R/p), and consider the homomorphism

p: R®, k(p) = k(p), r@a— (r mod p)-a.

Set q := ker ¢ and denote by R the completion of R ®,, k(p) at the mazimal ideal q and by ﬁp the
completion of R, at R,p. Then the following hold:

(a) One has an isomorphism Ep [T] = R.
b) If R is formally smooth over k(p) of dimension d, then Ry is reqular of dimension d — 1.
P

For a variant of Lemma 3.3.5 in the non-equicharacteristic case see [BIP21, Lemma 3.36].

Proof. Consider R — R, — ﬁp. Tensoring with k(p) over &, it yields a diagram

R @, (p) Ry @y k(p) —> By @ £(p) = (lim Ry /Rpp™) ®y (p)

’ - " - =
L - L -
L _ -
—
A

- —
~

R =1lm(R®, x(p))/q",

where ¢ denotes completion and where the dashed arrows +" and " will now be constructed. For the
existence of ¢/, we use the universal property of localization. Thus we need to show that R\ p® 1
is mapped under ¢ to the units in R. The ring R is local with residue map induced from ¢, and
therefore we need to show that o t(R~\p® 1) lies in x(p)*, but this is clear from the definitions
and the inclusion R/p < x(p). Regarding "/, we first note that p ®, x(p) maps to q under ¢ and
hence p™ ®, k(p) to q". Hence the existence of ¢/ gives a compatible system of homomorphisms
Ry /Rpp™ — (R®, k(p))/q" and this provides the construction of V'

Let 7 denote the reduction map m: R — k(p), set ¢’ = wo i/ and ¢” = 7o ”, and define
q' = ker ¢’ and q" = ker ¢”’. Then the arguments just given provide a commutative diagram with
canonical isomorphisms in the bottom row

R @ r(p) Ry @4 5(p) Ry @ w(p) = (lim Ry/Ryp™) @5 5(p)
|

I
| n -
A A

R=1lim(R®, n(p))/q" = R = lim(R, ® x(p))/a" —=—> R = lim(B, @, n(p))/q"",

where by slight abuse of notation we denote the middle and right vertical maps again ¢/ and ”.
Note that by the Cohen structure theorem in equal characteristic the ring ﬁp contains k(p) as a
subfield. Focusing on the right-most arrow and using that R, is regular if and only if Ep is so, it
will suffice to prove the following assertion:
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3 DEFORMATIONS OF GALOIS REPRESENTATION

Let R be a complete Noetherian local x(p)-algebra with residue field x(p) and residue homo-
morphism 7: R — k(p), let ¥: R ®x (p) — k(p) be the homomorphism r @ x — w(r) - z, let
9 = kery and let R be the completion of R @, #(p) at Q. Then we assert that R = R[{].

To prove the assertion, note first that if S; and Sy are k(p)-algebras with maximal ideals 93
and Py such that x(p) is in both cases the residue field, then the completion of S := 81 @y () So
at the maximal ideal m :=‘P1 @) So+ 81 Ry (p) P2 is isomorphic to

If furthermore S is complete with respect to 3, and if lim So /Py = k(p)[T], then the completion of
Sat mis $1[T]. We apply thisto S; = R, Sz = k(p)®xk(p), Pa = ker (k(p)@xk(p) = k(p), 2Ry —
2y). Then by Corollary 3.3.4 we have lim Sa/PL =2 k(p)[T], and we deduce R = R[T]. O

Let us record the following consequence of Theorem 3.3.1 and Lemma 3.3.5.

Corollary 3.3.6. Suppose E is a local field and p: G — GL,(E) is a continuous homomorphism.
Let k be the (finite) residue field of E and let p be the semisimple reduction of p to k. Then

dimg H'(G,ad,) < dim, H'(G, ad,).

Proof. The corollary will follow from the simple fact that the rank of a coherent sheaf cannot
decrease under specialization: Let O be the valuation ring of E. By possibly passing to a finite
extension of F, we may assume that E™ contains a p(G)-stable O-lattice whose reduction is p. Let
R := R5%. We may assume that R is Noetherian, i.e., that dim, HY(G, ad;) is finite, since else
there is nothing to show. Let also Rand R = R, be as in Theorem 3.3.1, and denote by f a
map f: R — O given by the versality of R.

Denote by Q r/o = lim, Q(r/mn) /0 the module of continuous Kéahler differentials. Since R is a
quotient of a power series ring over O in finitely many variables, as an R-module Q r/o is finitely
generated. By Nakayama’s Lemma we have

dimpg (AZR/O ®r E < dim, QR/O R K-

Let p = (Ker f), let mp = Ker(R, — E), with the map induced from f, and let mp be the
maximal ideal of R. Then by [BKM21, Lem. 7.3] we have Qp/0 ®r E 2 p/p?> ®g E = mp/m3,
and furthermore from Lemma 3.3.5 and Theorem 3.3.1, again combined with [BKM21, Lem. 7.3],
we obtain mp/m% @& E 2 mp/m2 QE/E Rz E — QR//E ®pr E, where the last map is surjective.
Hence

dimg QR’/E Rpr F <14 dim, ﬁR/O XR K.

By [Maz97, § 17, § 21], the dual of (AZR/O ®pr k is the mod me-tangent space of R at mgr and

the dual of r/E @r E is the tangent space of R’ at mp/, and the latter can be identified with
H'(G,ad;) and H*(G,ad,), respectively. This proves the corollary. O

3.4 Relative formal smoothness of the determinant functor

A generalized Tate local duality: We recall a generalization of Tate local duality from [Nek06].
Let first G be a profinite group and M a discrete G-module. Then one defines the continuous
cohomology H'(G, M) as lim H(G/U, MY), where il is the set of all normal open subgroups
of GG; they form a basis of open neighborhoods near the identity of G. This applies for instance
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3. Relative formal smoothness of the determinant functor

if M is a k-vector space with a continuous G-action and if x is finite. Suppose however that « is
a local field and that M is a finite dimensional k-vector space that carries the natural topology
induced from x and a continuous k-linear G-action. Let O be the valuation ring of x with maximal
ideal mp and finite residue field F. Because G is compact a standard argument shows that M
contains a G-stable O-lattice L. Suppose that G satisfies the finiteness condition (F) that for
all open subgroups U C G and all i > 0 one has dimp H*(U,F) < oo. In this case one defines
continuous cohomology via
HY (G,M) := @Hi(a, L/m)L) @y K,

and one shows that this definition is independent of any choices; it follows from [Nek06, 4.2.2]
that this definition agrees with the one used in [Nek06]. Note that one also has HY(G, M) =
ZYG,M)/B‘(G, M), where Z'(G,M) and B‘(G,M) denotes the continuous i-cocycles and i-
coboundaries, respectively, and one has H°(G, M) = M%. For i = 1, Z'(G, M) is the group
of continuous maps ¢: G — M with ¢(gh) = gc(h) + ¢(g) for all g,h € G. Note also, that all
1-coboundaries are continuous by the continuity of the action of G on M; the latter no longer
holds for n-coboundaries with n > 2.

The next result is a generalization of Tate local duality from finite field to local field coefficients.
In the form needed it is due to Nekovaf. Let V be a finite-dimensional k-vector space with the
topology induced from k, and suppose that V carries a continuous k-linear action by Gg. Write
V'V for the dual Hom,(V, ) of V, and V(1) for the twist of V by the cyclotomic character. Set
h(K,V) :=dim, H (Gg,V).

Theorem 3.4.1 (Tate and Nekovai). The following assertions hold:
(a) One has W (K,V) < oo for j € Z and hi(K,V) =0 for j ¢ {0,1,2};
(b) For j € {0,1,2} one has natural isomorphisms
H* 9 (Gg,VV(1) = HI (G, V)Y,
(c) One has the Euler characteristic formula

S ()W, V) = —[K : Q] - dimp V.
j=0

Proof. If k is finite, the above statement is just the usual Tate local duality. If x is local, let O be
its valuation ring. Because Gk is compact one can find an O-lattice T in V that is stable under
Gk. Let j > 0. Then [Nek06, Thm. 5.2.6] asserts that each H’(Gg,T"), T € {T,TV(1)}, is a
finitely generated O-module and moreover it gives a spectral sequence

Exth(H?*79(Gg,TV(1)),0) = H™(Gg,T). (9)

Because O is regular and of dimension 1, the groups Extb(-, ) are finitely generated O-torsion
modules, and Extl(-,©) = 0 for i > 2. After tensoring (9) with & over O part (b) and (a) are
clear. Part (c) follows from [Nek06, Thm. 4.6.9 and 5.2.11] applied to T, again after tensoring with
K over O. O

The determinant map: The determinant of representations induces a natural transformation
det: Dﬁ — Ddetﬁ (10)
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3 DEFORMATIONS OF GALOIS REPRESENTATION

that maps the class of p: G — GL,(A) to the class of detop. The induced map on adjoint
representations is the trace map in the short exact sequence

0 — adl — ad; > adger y = K — 0. (11)

Using that ad; is self-dual it is easy to see that the sequence dual to (11) is
0—r 2% ad, — ad, — 0. (12)
We have the following explicit result on det for G = G and K a p-adic field with d = [K : Q).

Lemma 3.4.2. Suppose that HO(GK,Eﬁ(l)) = 0. Then det: D; — Dget 5 is smooth of relative
dimension d(n? —1). This holds in particular, if pfn, k = Endy g, (p) and §, € K.

Proof. Let A — B be a small extension in Ara. Let I be its kernel so that 12 C m4J = 0. For the
relative smoothness, we need to show the surjectivity of

Dy(A) — Dp(B) Xpye »(B) Daet 5(A).

So suppose we are given deformations pg € D;(B) and 74 € Dges5(A) with det pp = 74 ®4 B €
Daet 5(B). We need to find a deformation py € D;(A) such that pg ®4 B = pp and det pg = 74.

Recall from [Maz89, p. 398] that there is a canonical obstruction class O(pg) € H*(G,ad,) ®
I, which vanishes if and only if there exists a deformation of p to A that lifts pg. Because
of the existence of the deformation 74 that maps to det pg, the obstruction class O(det pg) €
H?(Gx,adge 5) @k I vanishes. By Theorem 3.4.1 the long exact sequence of Galois cohomology
arising from (11) gives the left exact sequence

H?(tr
H2(G,ad%) —> H2(G, ad,) o H2 (G, k) ——> 0

By Theorem 3.4.1 the sequence is dual to the right exact sequence

0 (dia,
0 —> HO(Ge, (1)) 2226

H°(Gk,ads(1)) — H(Gk,ads(1)),
that arises from (12). By our hypothesis the map H(diag(1)) is an isomorphism, and so by
duality the same holds for H?(tr). By a short explicit computation one sees that O(pp) maps to
O(det pp) = 0 under H?(tr) ®, ids, and this implies the vanishing of O(pg).

We have now proved that there exists p/y € D;(A) mapping to pp € D;(B). However, this
lift need not satisfy det p/y = 74. At this point we note that our hypothesis in fact implies that
H2(GK,adg) =0, so that

HY(Gp,ad,) — H'(Gk,adget ;) = H (G, k) (13)

is surjective. Now det p/, and 74 are deformations of 75 and the space of all such deformations is a
principal homogeneous space under H (G, k), i.e., the tangent space of the deformation problem,
by [Sch68, Rem. 2.15], and likewise the deformations of pp form a principal homogeneous space
under H'(Gf,ad;). Since (13) is surjective we can thus alter p/y by a class in H'(Gg,ad;) into
some other deformation py of pp that also satisfies det py = 74. This completes the proof of the
formal smoothness. Note also that if p fn, then the above two sequences are exact on both sides
and hence H°(Gk,ad;(1)) = 0.
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3. Relative formal smoothness of the determinant functor

univ
det p

relative dimension h = h'(K,ad;) — h* (K, adget ). It remains to identify A with the number in
the lemma. Since (13) is surjective, by the long exact sequence for H*(Gk, ) applied to (11), we
deduce

By Proposition 3.1.5 it follows that the natural map R — Rg“i" is formally smooth of

h = h'(K,ad}) — h°(K,adaet 5) + h°(K, ad;) — hO(K,ad)) = h' (K, ad)) — 14+ 1 — h°(K,ad)).

Since h?(K, adg) = 0 by hypothesis and the duality statement of Theorem 3.4.1, the Euler charac-
teristic formula of Theorem 3.4.1 implies h = d(n? — 1).

The last assertion is straightforward. If p fn, then the sequence (11) splits; the second assump-
tion now yields H%(Gg,ady) = 0. If now & has characteristic zero, then 0 = H%(Gk, r(1)) =
HY(Gg,ad;(1)) and we are done. If on the other hand « has characteristic p and (, € K, then
adg- = ad%(l) and we are done, as well. O

Let p1: Gk — GLi(k) be a continuous character and denote by po: Gxg — GL1(k) the trivial
character. If  is finite, denote by p1: Gx — GL1(A) the Teichmiiller lift of g1, if & is a local field,
set p1 := p1. There is a natural isomorphism D, — Dj, mapping a deformation p: Gx — GL1(A)
to p® p1. As already observed in [Maz89, § 1.4, Dj,
A[[GE2P]], where G327 is the completion of the abelianization G2 of Gx along normal open

is representable by the completed group ring

subgroups of p-power index; the universal homomorphism
ab,
Gk — (MG

factors via Ge;?’p and sends g € G}i?’p to itself as a unit element in A[[G%”p]]. The reciprocity
homomorphisms of local class field theory, yields an isomorphism

b
rec’: K*P — G377,

where K *°P is the pro-p completion of the multiplicative group K*. The torsion subgroup of K *?
is naturally identified with the group p,e- (K) of p-power roots of unity in K. Combining this with
det from (10), we have the following chain of natural ring homomorphisms in Ary

Alppee ()] — A[[K*P]] = Rhu5 — RY%. (14)

Corollary 3.4.3 (Cf. [Nakl4, § 4].). Let k be finite or a local field of characteristic p and suppose
A = k. Suppose that H°(Gk,ad;(1)) = 0. Then the following hold:
(a) Both morphisms in (14) are formally smooth.

(b) Both morphism in the following induced diagram are formally smooth:
A = Alpapoe (K)]rea — A[[KP]]red = (Rxe,fietﬁ)red — (R\//\%rﬁ)red-
The relative dimensions in both cases are d + 1 and d(n® — 1), respectively

Proof. Let q := ord pipe (K). By Lemma 3.4.2 the natural map Rggti"p — Rgni" is formally

smooth of relative dimension h = d(n? — 1). From the theory of local fields one has K> =
ZI[DK:QpH1 X fipoo (K'), where pi,eo (K) is a finite cyclic group of p-power order ¢g. By our hypothesis

on the characteristic of «, the right hand morphism in (14) can be identified with
wlz]/(@9) = Kllzy, .o xa, 2]/ (27),
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3 DEFORMATIONS OF GALOIS REPRESENTATION

and parts (a) and (b) for it are now obvious. To see the second part of (b), note that the kernel

of the reduction map r[z]/(z?) — & is nilpotent. Hence the kernel of the induced map ¢: R} —

RS ®pla)/(z0) # is nilpotent as well, and the map R} — (R}7)red factors via ¢. At the same

time, formal smoothness is preserved under base change. Hence k — R’} ®y2)/(za) £ is formally
ver

smooth, and therefore A5 ®rlz)/(ze) K 18 regular and in particular a domain. We deduce that
RYS ®la))/(1) K — (R} )red is an isomorphism, and this completes (b). O

We end this subsection with a computation of H(Gg,ad;®y) and a variant of Lemma 3.4.2
for certain reducible deformations.

Lemma 3.4.4. Let E be a finite or local field with its natural topology. Denote by p;: Gx —
P1

0 p2
of p1 by p2. Let x: Gx — E* be a continuous character and write 1 for the trivial character.

GL,,,(E) continuous Galois representations for i = 1,2, and let p = ( be an extension

Suppose that
(a) Homg,. (p1,p2 ® xX) =0 and Homeg,. (p2, 01 ® x) = 0.
(b) Fori=1,2, we have Endg, (p;) Z E if x =1 and Homeg, (pi, pi ® X) =0 if x # 1.
(c) If x =1, then the class c € EX‘UEK (p2, p1) is nontrivial,

Then Endg, (p) 2 F if x =1 and Homg,. (p,p @ x) =0 if x # 1.

Proof. To determine Homg, (p, p ® X), we consider A;; € Mat,, xn, (E) for 1 <14, j < 2 such that

0;(1411 A12)<,01 c )_(,01@)( c®x ><A11 A12>
Agr Agp 0 po 0 P2 ® X Asr Ago
<A11p1 A11c+A1202)<p1®X'A11+C®X~A21 Pl®X‘A12+C®X'A22>
Az1p1 Asic+ Axaps P2 ® X - A p2 ® X - Ago ’

From hypothesis (a) and considering the (2,1)-entry we deduce A2; = 0. From hypothesis (b) and
considering the (1,1)- and (2,2)-entries, we deduce, depending on x the following: If xy = 1, then
A;; are scalar for ¢ = 1,2, say equal to \;1,,, for some \; € E, respectively; if x # 1, then both
A;; = 0. Considering the (1, 2)-entry, we obtain the relation

Alic—c®x - A = p1 @ x - A2 — A12p2

If x # 1, the left hand side is zero, and from (a) we deduce A;2 = 0, so that the proof in this case
is complete. If x = 1, then we have (A — A2)c = p1A12 — A12p2. Now g — p1(g9)A12 — A12p2(g) is
a 1-coboundary with values in Homg, (p2, p1), and so if Ay # Ay the last condition implies that ¢
is the trivial class in ExtéK (p2, p1) which is excluded by hypothesis (¢). This shows A\; = A2, and
A2 € Homg, (p2, p1), and hence A5 = 0, again by (a). This completes the proof. O

For Proposition 5.3.3 we also need a variant of Corollary 3.4.3 for certain reducible p. So for
the remainder of this subsection let p,: Gx — GL,,(k), i« = 1,2, be absolutely irreducible, and
assume that p; is not isomorphic to py(j) for j € {0, £1}. Let further p be a non-split extension
of dimension n = nj + no that fits into a short exact sequence 0 — p; — p — p2 — 0. Define the
subfunctor Dp, 5 C D5 by mapping A in Ara to the set of I',,(A)-conjugacy classes of liftings pa
of p to A such that pa stabilizes an A-direct summand Py of A™ of rank nq, so that the induced
representation of p4 on P4 is a deformation of pi; because of the shape of p the deformations
described by Dj, 5 are precisely the ‘reducible’ deformations of p. In fact:
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3. Relative formal smoothness of the determinant functor

Lemma 3.4.5. D;,;CD; is a relatively representable subfunctor in the sense of [Maz97, §19].

Proof. In lack of a reference, we give a proof. Given a diagram A — B < C in Ary, one has to
show that the induced diagram

Dp cp(A xp C) —=Dpcp(A) Xp,, () Dpycp(C)

| |

Dy(A xp C) ————=Ds(A) xp,(B) Ds(C)

is a pullback in the category of sets. To see this, suppose (pa, pc) is an element in the top right and
PAxzc in the bottom left, both mapping to the same element in the bottom right. Then (pa, pc)
gives rise to a pair of subrepresentations (p), pt.) that are deformations of p; and a pair of quotient
representations (p?%, pzc) that are deformations of po and each pair maps to the same element on
B, say ph and p%, respectively. By our hypotheses on the p; the respective deformation functors
Dj, are representable, so that each pairs patches to a deformations pl, o of p1 and p%, o of pa
on A x g C, respectively. It now follows from [Urb99, Theorem] that pax ¢ lies in D5, c5(A x5 C)
with ply, - as asub and p% . as a quotient representation. O

Now by Lemma 3.4.4 we have Endg, (p) = &, so that D; is representable. By Lemma 3.4.5 it
follows that Dj, 5 is a closed subfunctor that is representable by a quotient of R;ni" in Ary. Let
pg?ic"ﬁ: Gk — GL,(R¥WY)) be a universal representation for Dy, 5. By the shape of p and the

pP1Cp .
reducibility of p we can choose a suitable basis for p2"t_  so that

p1Cp>

univ,1
univ._ pﬁ] cp *
pp1Cp - 0 pun1v,2 .

p1Cp

univ
P1Cp

for representations pj)c; : G — GLy, (R31Y;), and * a suitable non-trivial extension class. Here

the p;i‘icv F’—f are unique up to conjugation.
We now adapt the setting developed before Lemma 3.4.2 to the present situation. Namely, one
has a natural functor

2
det”: Dj,cp = Daet gy X Ddet po s

which for A € Ary attaches to py € Dj,c5(A) with pa-stable direct summand Pa(= A™) of A™
the pair (det(p4|p,),det(pa mod Pj)) of deformations of (det p,,det p,). Let ads, 5 C adj be the
block upper triangular subspace of matrices that preserve p;. Mapping matrices to the diagonal
blocks gives a surjection 7: ads, -5 C ad; — adp, © adp,, and we denote by ad%?cﬁ C adp, c; the
inverse image of adg e adg2 under 7, and by rads, 5 the kernel of .

Now as in the proof of Lemma 3.4.2, obstructions to the smoothness of det? lie in the group
H?(Gk, adg?cﬁ). Using the short exact sequence 0 — rads, cp — adg?cﬁ — audg1 X adg2 — 0, and
the vanishing of H?(Gk,rads, ;)" = HY(Gk,Hom(py, p2)(1)) = Home, (p1, p2(1)), that relies on
local Tate-duality from Theorem 3.4.1 and 7; % p2(1), one finds

H*(Gg,ad?

pP1Cp

) & H*(Gg,ad) @ad)). (15)

Again from Tate local duality one deduces that det? is formally smooth if H%(G,ad,, (1)) = 0 for
1 = 1,2. Assuming this, the map of rings Rggtivﬁl ®AR§$‘%2 — Rg?ic"p is formally smooth and the
relative dimension is given by

h = dimim (H'(Gk,ads,c;) = H' (Gk,ad;)) — 2dim H' (G, k).
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4 PSEUDOCHARACTERS AND THEIR DEFORMATIONS

To compute h, observe first that H' (G, ad;,c;) = H' (G, ad;) is injective because ad;/ad;, c 5
Homy (p1, p2) and Homg, (p1,p2) = 0. The quantity dim H!(G, ) was computed in the proof
of Corollary 3.4.3 to be 1+ d + 6, where 6, = 0if {, ¢ K and ¢, = 1 if (, € K. Finally
dim H'(Gk, ad;, ) is computed by the Euler-Poincaré formula of local Tate duality: Lemma 3.4.4
yvields HY(G,adp, ;) = HY(Gg,ad;) & K, and in the same way in which we deduced (15), we
obtain H*(Gg,ad;,c;) = H*(G,ads, ®adg,), and by local Tate duality the latter has dimension
20,. In total, we find

h = (d-dimadsc;+1+26,) —2(d+1+6,) = ddimad)’ ;1.

One also easily adapts the proof of Corollary 3.4.3. The following result summarizes the conclusions
needed later. For the last assertion one does not consider the map det? but uses a variant of
Theorem 3.2.4(e).

Proposition 3.4.6. Let k be finite or a local field of characteristic p, let A = k and suppose that
p is a non-split extension of ps by p1 and that py is not isomorphic to pa(j) for j € {0, £1}.
If H'(G,adp, (1)) =0 fori=1,2, then:

(a) det?: Ds,cp — Daet jpy X Daet p, 18 formally smooth of relative dimension d(n® —nins —2)—1.

(b) The ring (R ;)rea is formally smooth over r of dimension d(n* —ning) + 1.

If on the other hand H°(Gr,ad;, (1)) = 0 for i = 1,2, then R is formally smooth over k of
dimension d(n? — nino) + 1.

4 Pseudocharacters and their deformations

In this section we recall main definitions and results on polynomial laws and pseudocharacters. We
assume that the reader is familiar with [Chell, Chel4, WE18]. Nevertheless, we will give many
reminders. Each subsection gives a short survey over its contents. In Proposition 4.3.9 we prove
an analog of the locus of reducibility of [BC09, Prop. 1.5.1] in the context of pseudocharacters. In
Subsections 4.5 and 4.6 we introduce twisting and induction as operations on pseudocharacters.
In Proposition 4.7.4 we sketch the existence of a universal ring for continuous pseudodeformation
where the residue field is a local field and in Proposition 4.7.6 we consider such rings under change
of coefficients. These are adaptions of well-known results. Subsection 4.8 presents in detail several
results on dimension 1 points in universal pseudodeformation spaces.

Throughout this section, A will be a commutative unital ring with 0 # 1. If A is local, we
write m4 for its maximal ideal and k(A) for its residue field. We write Alga for the category of
A-algebras and CAlga for the full subcategory of commutative A-algebras. By R,S we always
denote objects of Algs and by B an object of CAlgys. For an A-algebra R we denote by R° the
A-algebra with the multiplication of R reversed. By G we denote a group and by B[G] the group
algebra over B for any B € CAlgs. The letters m,n (also with indices) will denote non-negative
integers. If p: G — GL,(B) is a representation, then by p''": B[G] — Mat,,»,(B) we denote its
linearization given by >, big; — >, bip(g;).

4.1 Pseudocharacters

In this subsection, we introduce pseudocharacters, Azumaya algebras and Cayley-Hamilton A-
algebras. Of particular importance is Proposition 4.1.10, which says that a pseudocharacter is
determined by its characteristic polynomial coefficients.
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4. Pseudocharacters

For an A-module M we define the functor M : CAlgs — Sets, B+— M ® 4 B.

Definition 4.1.1 ([Chel4, § 1.1]). Let M and N be A-modules.

(a) An A-polynomial law P: M — N is a natural transformation M — N. Le., P is a family
of maps Pg: M ®4 B — N ®4 B for all B € Ob(CAlga) that induce commutative diagrams
for every morphism in CAlga.

(b) An A-polynomial law P: M — N s called homogeneous of degree n if
Pp(bx) =b"Pg(x) for all B € Ob(CAlgs), b€ B and x € M Q@4 B.

We let Py(M, N) denote the set of all such.
Let S, 5" be objects in Alga, so that in particular they are A-modules.
(c) An A-polynomial law P: S — S’ is called multiplicative if
Pg(1l)=1 and Pg(zy)= Pp(x)Ps(y) for all B € Ob(CAlga) and z,y € S®4 B.
(d) We write M’(S,S") for the set of multiplicative A-polynomial laws P: S — S’ that are
homogeneous of degree n.

(e) A pseudocharacter on S of dimension n is an A-polynomial law D : S — A that is multi-
plicative and homogeneous of degree n. We let PsREG(A) be the set of all such.

(f) If S = A[G] in (e), we call D an A-valued pseudocharacter on G of dimension n, and we
write PsRE(A) for PsRY g (A); occasionally we write D: G — A for D: A[G] — A, and
then we explicitly refer to D as a pseudocharacter on G.

Remark 4.1.2 ([Chel4, after Exmp. 1.2]). A homogeneous polynomial law P of degree n is uniquely
determined by Pair, .. 1,.1: M[T1,...,Tn] — N[T1,...,Tp] for all m > 0.

Facts 4.1.3. The following facts are easy to verify.
(a) The only multiplicative polynomial law of degree zero is the constant map with value 1.

(b) Multiplicative polynomial laws that are homogeneous of degree 1 are A-algebra homomor-
phisms, and vice versa.

(¢) The composition of polynomial laws is a polynomial law; if both are homogeneous, the com-
position is homogeneous and its degree is the product of the individual degrees.

(d) The composition of multiplicative polynomial laws is multiplicative.

(e) If D: S — A is an A-valued pseudocharacter, then for any B € CAlga, the base change
D®asB: S®aB — B is a B-valued pseudocharacter.

Definition 4.1.4 (pseudocharacter of a representation). Let p: G — GL,,(A) be a representation.
The pseudocharacter D, attached to p is the polynomial law that to any B € CAlga attaches the
composition of the determinant det: Mat,,x,(B) — B with the morphism (p ® 4 B)'".

Let D be a pseudocharacter on G over A. Because D is multiplicative, we have D(gh) =
D(g)D(h) for g,h € G and D(1) = 1. Thus the map ¢: G — A* g — Dx(g) is a group
homomorphism, and Definition 4.1.4 associates the pseudocharacter D, to .

Definition 4.1.5 (Determinant of a pseudocharacter). We call det(D) := D, the determinant
of D.
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4 PSEUDOCHARACTERS AND THEIR DEFORMATIONS

Reminder 4.1.6. From [Mil80, § TV.1— IV.2] we recall the notion of Azumaya algebra and some of
its properties. Let first A be a local ring with residue field k. An algebra C € Alg, is called an
Azumaya A-algebra if C is free of finite rank as an A-module and if in Alg4 the map

C®4C° — Enda(C), c®c+— (x> cad),

is an isomorphism; equivalently, there exists a finite étale morphism A — B such that C ® 4 B &
Mat,,xm(B) for some m. One calls m the degree of C; it satisfies rankq C = m?. Moreover C
carries a reduced norm map deto: C' — A characterized by the property that detc ® 4B is the
determinant on Mat,, xm(B). Its extension to C[t] defines a reduced characteristic polynomial
Xe = detop(t — ¢) € A[t], monic of degree m, for any ¢ € C. Lastly, C ® « is a central simple
algebra over k.

Let now X be a scheme. An Ox-algebra C is called an Azumaya algebra over X if C is coherent
as an Ox-module and if for all z € X, the stalk C, is an Azumaya algebra over Ox ,; equivalently,
there exists a Zariski cover {U;} of X and for each i a finite étale surjective cover U/ — U, and
an isomorphism C ®o, Oy 5 Maty, xm, (Op) for suitable m; € N>;1. In particular, the degree
function m: X — Nx; such that rankp, C = m? is locally constant. Also, the reduced norm exists
as a map dete: C — Ox. For X = Spec A affine, one calls C = C(X) an Azumaya A-algebra.

Ezample 4.1.7. Let C be an Azumaya A-algebra of degree n with reduced norm detqs: C — A.

(a) The family of reduced norms (detc ®4B: C ®4 B — B)pecuig, defines a pseudocharacter,
also called det¢, of dimension n; see [Chel4, § 1.5].

(b) If D: C — A is any pseudocharacter of dimension n’, then by [Chel4, Lem. 2.15], we have
n|n/ and D = det, /.

An important notion for pseudocharacters is that of characteristic polynomial.

Lemma 4.1.8 ([Chel4, § 1.10]). Let D € PsR%(A). Define xp.g(-,t): S ®a B — Blt] by
s+ Dpp(t —s) for all B € Ob(CAlga) and s € S @4 B. Then the following hold:

(a) xp(-,t): S — A[t] is a multiplicative homogeneous polynomial law of degree n.
(b) There exist unique A-polynomial laws Ap;: S — A of degree i, i =0,...,n, such that

n

XD (1) =Y (=1)'Ap ()"

i=0
(¢c) Apo=1and Ap, =D.

(d) The maps s — Y i o(=1)'Ap(s)s"~" for all B € Ob(CAlga) and s € S ®4 B define a
multiplicative A-polynomial law xp: S — S that is homogeneous of degree n.

Definition 4.1.9. [Chel/, § 1.10] Let S, D, xp(-,t) and Ap; be as in Lemma 4.1.8.
(a) The polynomial law xp(-,t) is called the characteristic polynomial of D.
(b) The polynomial law Ap ; is called the i*® characteristic polynomial coefficient of D.

(c) The A-linear map Tp := Ap 1 is called the trace associated with D.

An important tool to extract properties of multiplicative homogeneous polynomial laws is Amit-
sur’s formula; see [Chel4, Formula (1.5)]. It expresses values of such laws in terms of characteristic
polynomial coefficients. Using this, one deduces the following result:
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4. Pseudocharacters

Proposition 4.1.10 ([Chel4, Cor. 1.14],[WE13, 1.1.9.15]). Let D € PsR%(A).
(a) The characteristic polynomial coefficients (Ap;: G — A);=1,._n characterize D.

(b) Let C C A be the subring generated by {Ap,(g) : g € G,i = 1,...,n}. Then D factors
through a unique C'-valued pseudocharacter Do on G of dimension n.

An natural operation on pseudocharacters is the formation of direct sums.?

Definition 4.1.11 ([WEI13, § 1.1.11]). Let S, S1,S2 be Alga and B in CAlga.
(a) The direct sum of multiplicative homogeneous A-polynomial laws P;: S; — B of degree n;,
1 =1,2, is the multiplicative homogeneous A-polynomial law of degree ni + no given by

ProP: S XSQ—>B, ($1,$2)>—>P1(.’131)P2($2).

(b) The direct sum of pseudorepresentations D;: S — A of dimension n;, i = 1,2, is the pseu-
docharacter of dimension ny + ny given by D1 ® Da: S — A,z — D1(x)Dy(x).

Remark 4.1.12. Note that det™ /™ from Example 4.1.7 could now also be written as det®'/m),

Lemma 4.1.13 ([WE13, Lem. 1.1.11.7]). For i = 1,2 let p;: G — GL,,(A) be a representation,
and set p := p1 ® pa. Then D, = D, @® D,, for the associated pseudocharacters from Defini-
tion 4.1.4.

Lemma 4.1.14 ([Chel4, Lem. 2.2]). Let S1,S2 be in Alga. Let B # 0 be in CAlga such that
Spec B is connected. Let P: S1xSs — B be a multiplicative A-polynomial law that is homogeneous
of degree n. Then there exist for i = 1,2 unique n; > 0 with n1 + ny = n and multiplicative
homogeneous A-polynomial laws P;: S; — B of degree n; such that P = Py & Ps.

To any D € PsR%(A), one can naturally assign its kernel Ker(D).

Definition 4.1.15 ([Chel4, 1.17]). Let P: M — N be a polynomial law for A-modules M, N.
(a) The kernel ker (P) of P is the A-submodule of M defined as

{reM : Pe®@b+m)=P(m) forall B€ Ob(CAlga), b€ B and m € M ®4 B}

(b) If ker (P) =0, then P is called faithful.

Proposition 4.1.16 ([Chel4, 1.19-1.21]). For D € PsR%(A) the following hold.

(a) ker D is a two-sided ideal of S; there ezists a unique D € PSR, yer p(A) such that D = Do
for w the projection S — S/ ker D, and ker D is mazimal with this property.

(b) If C is an Azumaya A-algebra then its reduced norm detc is faithful.
Over fields, the following is a fundamental result on faithful pseudocharacters.

Theorem 4.1.17 ([Chel4, Thm. 2.16]). Let k be a field such that k is perfect, or k has character-
isticp > 0 and [k : kP] < oo. Let D: S — k be a pseudocharacter of dimension n. Then S/ker D
is of finite k-dimension and semisimple as a ring.

Choose a k-algebra isomorphism S/ ker D = [1;_, Si where each S; is a simple k-algebra. Let
n; be the degree of S; over its center k;, let f; := [k; N kP : k] and let ¢; be the smallest p-power

2We use the term direct sum in analogy with the case of representations; Chenevier uses the term product.
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4 PSEUDOCHARACTERS AND THEIR DEFORMATIONS

such that k' C k5°P; note that all ¢; = 1 if k is perfect. Then under the above isomorphism one

S
D= @det?ﬁmi
i=1

for some uniquely determined integers m; > 1, and one has n =", m;in;q; f;.

has

Over algebraically closed field, the following consequence of Theorem 4.1.17 is important.

Theorem 4.1.18 ([Chel4, Thm. 2.12]). Suppose that k is an algebraically closed field and S
is a k-algebra. If D: S — k is an n-dimensional pseudocharacter, then there is a semisimple
representation pp: S — Mat, «n (k) unique up to isomorphism with associated pseudocharacter D,
and one has ker pit = ker D.

Definition 4.1.19. Let k be a field and let D € PsRE (k).
(a) We call ppg, ke from Theorem 4.1.18 the semisimple representation associated to D ®y, ke,
(b) We call D
(1) irreducible if ppg, ka1= is irreducible, and reducible otherwise;

(2) multiplicity free if ppg, pate s a direct sum of pairwise non-isomorphic irreducible ks
linear representations of S @y, k™8;

(3) split if D = D, for some representation p: S — Maty,xn(k);

Note that if k is finite, then every irreducible representation is split.
We record the following consequence that will be used in the proof of Proposition 4.4.7.

Corollary 4.1.20. Let D: F[G] — F be an n-dimensional pseudocharacter. Let F' be the extension
of F of degree n!. Then D ®r F’ is a direct sum of irreducible representations.

Proof. Over finite fields the Brauer group is zero. Thus by Theorem 4.1.17 we have an isomorphism
F[G]/ker D — [[;_; Matg, xq, (F;) for integers d; > 1 and finite field F; over F such that n =
Y. difimg for f; = [F; : F]. In particular all f; divide n! and hence F* D F; for all i. Over
perfect fields semisimple rings are absolutely semisimple, see Definition A.2.1 and Remark A.2.2,
and thus F'[G]/ker (D @ F') — [[_, H;L:l Matg, x4, (F’). We conclude using Lemma 4.1.14,
Example 4.1.7(b) and Remark 4.1.12. O

Next we recall the concept of the Cayley-Hamilton property for pseudocharacters.

Definition 4.1.21 ([Chel4, 1.17]). Let S be an A-algebra and let D be in PsRE(A).

(a) The Cayley-Hamilton ideal CH(D) of D is the 2-sided ideal of S generated by the coefficients
of the polynomials®
XD, Altr,..itm] (8) € S[t1, -5 ]

where m ranges over all positive integers and s over all elements of S[t1,. .., tm].2

(b) One calls D Cayley-Hamilton if CH(D) = 0, or, equivalently, if xp is identically zero.

Proposition 4.1.22 ([Chel4, 1.20f.],[WE13,1.1.8.6]). For D € PsR%(A) the following hold.

30bserve that XD, Alt1,...,tn] 1 from Lemma 4.1.8(d).
41t suffices to let the s range over all elements of the form 2ok sjt; with s; € S.
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4. Universal rings of pseudocharacters

(a) ker (D) D CH(D), and hence D factors via some D € PsRS) crp) (A)-

(b) If D is Cayley-Hamilton and S’ C S is any A-subalgebra, then Dlg: is Cayley-Hamilton.

(¢) For any morphism S — S’ in Alga one has S’/ CH(D ®g S’) = (S/CH(D)) ®¢ S’.
Definition 4.1.23 ([Chel4, 1.17]). Let S be an A-algebra and let D be in PsRE(A).

(a) One calls S§! := S/ CH(D) the Cayley-Hamilton quotient of S with respect to D.

(b) One calls the induced A-algebra homomorphism pGH: S — S/ CH(D) D the Cayley-Hamilton
representation attached to D.

Any pseudocharacter D € PsR%(A) possesses a factorization
CH =~
S o, oo Dy g (16)
with D from Proposition 4.1.22(a). In the special case S = A[G] the factorization is a composition
of a group homomorphism G — (SEH)* with D, i.e., D = D o p§$H: A[G] — A. Because of the
following result and the good behavior of CH(-) under base change, one might think of p$H as a

natural substitute of a representation p with D = D, when such a representation does not exist.
First we need one more piece of notation.

Definition 4.1.24. Let B € CAlga, D € PsRE(B) and X := Spec B. Let x € X with residue
homomorphism 7, : B — k(x), and let T be a geometric point of X above x, so that k(x) — k(T).

(a) We call Dy := 7, o D the pseudocharacter of D at x and set Dz := Dy ®(q) K(T).
(b) We call pz := pp.: G — GL,(k(T)) the (semisimple) representation at z.°
(c) We say that x has a property if Dz (or pz) satisfies this property.

If B is a universal ring for some space of pseudocharacters and x € Spec B, then by writing D, it
will be implicitly understood that D refers to the corresponding universal pseudocharacter.

The following is a significant generalization of Theorem 4.1.17 to families.

Proposition 4.1.25 (Cf. [Cheld, Cor. 2.23]). Let D € PsRE(A) be such that D, is irreducible
for all x € Spec A. Then C := A[G|S! is an A-Azumaya algebra of degree n, and D = detc op&H
for pSH: A[G] — C the Cayley-Hamilton representation restricted to G.

Remark 4.1.26. We shall use the notation pp for D € PsRE(A) in two situations: Either A is
an algebraically closed field and then it is the semisimple representation pp from Theorem 4.1.18.
Or A is arbitrary and D, is irreducible for all x € Spec A, and then it is an abbreviation for p&H.
Because of Proposition 4.1.25 this assignment is well-defined.

4.2 Universal rings of pseudocharacters

Here we recall the existence of a universal pseudodeformation ring and that irreducible points form
an open subscheme. Moreover we introduce morphisms related to the addition of pseudocharacters.

Proposition 4.2.1 ([Chel4, Prop. 1.6, Ex. 1.7]). The functor PsR%(-): CAlga — Sets is rep-
resentable for any S in Alga by some ring R‘gf‘rilv € CAlga. Moreover for any B € CAlga, the
natural map B @4 REW — R]ﬁ}l@ia\;s,n is an isomorphism.

5We sometimes ignore the subtlety of geometric points and simply write p.
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4 PSEUDOCHARACTERS AND THEIR DEFORMATIONS

The above means that there is a natural isomorphism Home (RS, -) = PsRE(-). Let the
pseudocharacter corresponding to id Runiv be

unlv univ univ
Sn S®A Sn Sn o+

Definition 4.2.2. The commutative A-algebra g“,‘L" and the A-scheme ‘én;LV := Spec R‘é“;" are
called the n-dimensional universal pseudocharacter ring and space, respectively, and Dgﬁi" 18 called
the n-dimensional universal pseudocharacter.

For S = Z|G], we abbreviate R“‘“V = Rg“;’, D“”“’ = Dgnﬁ" and X“”“V = g“;lv

Remark 4.2.3. (a) In [Chel4] the ring RE™Y is denoted by I'j (S)2P; in our notation A is implicit
in the structural map of S as an A- algebra.

(b) For A-schemes X there is an obvious notion of O(X)-valued pseudocharacter S — O(X) of
dimension n. The space X 4V represents the resulting functor of pseudocharacters on the
category of A-schemes.

Ezample 4.2.4. Recall the determinant det(D) € PsRE(A) of any D € PsR%(A) from Defini-
tion 4.1.5. If we apply this to Dj‘jf[‘g] s We obtain

det( urfw )GPSRS@JAR““”,H( Lng]n)

The last assertion in Proposition 4.2.1 and the universality of ,‘ir[lic\:’] 1 how yields a homomorphism

in CAlga
det: j‘fé’m — Rjrfg]m.

univ iv

and an induced morphism of schemes det: X AlG)n X ‘XFG]’I, which we both denote by det.

Lemma 4.2.5 ([Rob63, Thm. 111.4]). The following assertions hold:

(a) The canonical map REY . — @i_g R @ REY ., induced from the universal property
of these rings, is an isomorphism in CAlga.

(b) Let B # 0 be in CAlga such that Spec B is connected. Then any A-algebra homomorphism

&g, — B corresponding to P factors via some summand REY @ REY . in ((a)).

Corollary 4.2.6 ([WE13, Lem. 1.1.11.7]). Suppose ny1 +ngo =n for n; > 0. Then the map
bnyngt XY x4 XY — X & (D1, Dy) > Dy @ Dy

is a morphism of affine A-schemes that corresponds to the ring homomorphism

univ unlv 4.2 ﬂ univ univ
S,n S><S n S,nq S no

where A is induced from the diagonal map S — S x S and the universality of the rings.

4.3 Generalized matrix algebras

Generalized matrix algebras are important in the study of Cayley-Hamilton pseudocharacters over
Henselian local rings, and were introduced for that purpose in [BC09, § 1.3] in the context of Taylor-
pseudocharacters. This subsection recalls some basic result. In Proposition 4.3.9 we shall generalize
[BCO9, Prop. 1.5.1], in Proposition 4.3.9 on the ideal of total reducibility to pseudocharacters.
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4. Generalized matrix algebras

Definition 4.3.1 (Cf. [BC09, Def. 1.3.1]). A generalized matrix algebra (or simply GMA) over
A (of type (n1,...,n,)) is an A-algebra S together with

(i) a set of orthogonal idempotents eq,...,e, € S with >.._, e; = 1g, and
(ii) a set of A-algebra isomorphisms ; : e;Se; — Maty,, xn, (A) fori=1,...,r

such that the associated trace map 7 : S — A,x — Y . tr(i(e;we;)) is central, i.e., it satisfies

ceey

of S. If we wish to emphasize the entire structure of a GMA we write (S,&) instead of S. The
dimension of S will be . n;.

Notation 4.3.2. Let S be an GMA over A of type (ny1,...,n,). For 1 <i<r and1 <k, <n;
we denote by Ef’l the unique element in e;Se; that maps under 1; to the matriz in Mat,, xn, (4)
that has 1 in the (k,l)-entry and 0 everywhere else. For later use, we also introduce elements
Ei .= EZ;_zll for j = 1,....n, where i, > 1 are unique such that j = ny + ... + n; + i with
1 <i <njp1. We write A7 for E?SE’ and @7 for the isomorphism A7 — A induced from 7.

The following result explains why GMA are generalizations of matrix algebras.
Lemma 4.3.3 (Structure of a GMA [BC09, p. 21ft.]). The following assertions hold:
(a) Let (S,€) be a GMA over A of type (n1,...,n,), and define the following data:
(1) A-modules A; ; := Eil’lSE;’1 for1<i,j<r,
(2) isomorphisms A; ; = A under T fori=1,...,r,
(3) A-linear maps ¢; j 1 Aij ®a Aj i — Ak induced from the product in S.
Then they satisfy the following conditions:

(UNIT) Forl <i,j <r wehave A;; = A and both @, ; ; and ; ; ; agree with the A-module
structure on A; ;.

(ASSO) For1<i,jki<randz®@y®zc A ;D4 Ajr a4 Ak, we have

Ciki(Pigr(@yY)®2) = piju(r @ @Ry ©2) in A
(COMM) For1<i,j<r,xzeA;jandyc Aj; we have @; ji(x @y) = ;i iy ®x).
Then the structures in (1)-(3) induce an A-algebra structure on

Matnl Xny (Al,l) e Matnlxnr (Al,r)

Matn,.xnl (Ar,l) e Matn,.Xn,,.(-Ar,r)
and the latter is isomorphic to S.

(b) Conversely, suppose we are given a family (A; j)1<ij<r of A-modules together with A-linear
maps @ik Aij; @a Ajr — Aix for 1 <4, 4,k <r satisfying the above conditions (UNIT),
(ASSO) and (COMM). Then there is a unique structure of a GMA of type (ni,...,n,) on
the A-module S := @] ;_; Maty, xn; (Ai ;).

Next we provide some technical lemmas:

Lemma 4.3.4. Let S be a GMA over A of type (nq,...,n,) over A, and B € Ob(CAlgs). Then
S®a B is a GMA over B of type (ni,...,ny).
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4 PSEUDOCHARACTERS AND THEIR DEFORMATIONS

The proof of Lemma 4.3.4 is straightforward and left as an exercise.

Proposition 4.3.5 ([WEL1S, Prop. 2.23]). Given a GMA (S, &) over A of dimension n, there exists
a natural n-dimensional Cayley-Hamilton pseudocharacter det(s gy: S — A, called the determinant
of the GMA (S,&), and given, for any B in CAlga, by the formula

det(s.e)(z) = Z sgn(o) H (,DZO(HE[.’EEU(Z)) (18)
ceS,, cycles v of o ley

for any x € R ®4 B. Here the product is first over the cycles v in the cycle decomposition of o
and then over the elements | of the cycle v taken in the order that they appear in the cycle, where
lo is a choice of initial element of v, and p' is from Notation 4.3.2. We also have T = Abg.

The next results are auxiliary for Proposition 4.3.9 on the locus of reducibility of a GMA.
Lemma 4.3.6 ([Chel4, Lem. 1.12(i)]). One has D(1+ ss') = D(1+ s's) for all s, € S.
Lemma 4.3.7. Let (S,€) be a GMA and let D: S — A a pseudocharacter. Then for any x €
Mat,,, xn, (Aij) for some 1 < i,j < r with i # j, we have D(1 + e;xze;) = 1.

Proof. By Lemma 4.3.6 we have D(1 + e;zej) = D(1 +eje;x) = D(1) = 1. O

Lemma 4.3.8 ([Chel4, Lem. 2.4]). Let S be an A-algebra, e € S be an idempotent, and D: S — A
be a pseudocharacter of dimension n. Suppose that Spec(A) is connected.

(a) The polynomial law D.: eSe — A, s — D(s+ 1 —e), is a pseudocharacter; its dimension
r(e) satisfies r(e) < n and one has r(1 —e) + r(e) = n.
(b) The restriction of D to the A-subalgebra eSe ® (1 —e)S(1 — e) is the sum D, ® Dy_.. It is
a pseudocharacter of dimension n.
(¢) If D is faithful or Cayley-Hamilton, then D, is faithful or Cayley-Hamilton, respectively.
(d) Suppose that D is Cayley-Hamilton. Then e = 1 if and only if D(e) = 1, and e = 0 if and
only if r(e) =0. Ifeq,...,es is a family of nonzero orthogonal idempotents of S, then s < n
and >°7_, r(e;) < n. Further, >.i_,r(e;) =n if and only if Y ;_  e; = 1.
The next result is the adaption of [BC09, Prop. 1.5.1] to pseudocharacters.
Proposition 4.3.9. Let (S,€) be a GMA over A and let A; ; and ; ;1 be as in Lemma 4.5.5.
Define I = Z#j A; jAji as the ideal of total reducibility in A.
(a) (1) If I =0, then the map 7: S — >, e;Se; C S,z >, e;xe; is a ring homomorphism.
(2) Denoting by D; the map e;Se; % Mat,,, xn, (A) et 4 fori=1,...,r, one has
det(s,ey = ®j—1D;jom mod I.

(b) Suppose that there exist m;-dimensional pseudocharacters D: S — A with m; > 0 for i €
{1,...,7} such that one has det(s ¢y = ®;_;D;. Then I =0 and for a unique permutation

o € &, we have D;(i) = D; om with D; and 7 from (i).
Proof. Part (1) of (a) is a straightforward matrix calculation using A; jA;; = 0 for all ¢ # j from
{1,...,7r}. To see part (2) of (a) observe that (18) for » = 1 is simply the Leibniz formula for

matrix determinants. Hence by our definitions we have the explicit formula

D; mod I:e;Se; — A/I, x+— Z sgn(o;) H <pl( H Ela:E"(l)) mod I,

0,€6,, cycles vy; of o; lery;
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4. Generalized matrix algebras

and using distributivity for x € S

r

H(Di orm)(xz) mod I = H Z sgn(o;) H gol( H Ela:E”(l)) mod [

i=1 1=10,€6,, cyclesy; of o; levy;
s
_ ) l l o (1)
= e sgn(o;) ® E'zE mod I.
01€6,, 0rE€ES,, =1 cycles~; of o; levy,;

We have to compare the latter expression to

det(S,g)(x) mod I = Z Sgn(o') H @lO(HEl.i?EU(l)) mod I

oce6, cyclesyof o ley

Now in the last expression, the term <plO<Hl€7 Ele”(l)) mod [ vanishes unless 7y is contained
in a single factor under the inclusion &,, x ... x &, — &, by the definition of I and using
Lemma 4.3.3. This shows that

det(s.e)(z) mod I = Z ﬁsgn(ai) H @lO(HEla:E”(l)) mod I,

0=(01,-,07)EGn; X..X G, i=1 cycles yof o; ley

and it completes the proof of (a).
We now prove (b). We begin by proving the following Claim: There is a unique permutation
o € &, such that D; = (D], ;))e; and (Dj)e, = 1 for i’ # o(i). For this, we restrict & _,D;, to
e;Se;, so that
D; = (detsg))e; = Gt (Djy)e,

By Lemma 4.3.8 the (D)), are pseudocharacters of dimension my ; := dim(D}, )., < my. Now
under addition in the sense of Corollary 4.2.6 dimensions are added, and it follows that

T
n; = E i1 mg ;-

But because e;Se; = Maty,, xn, (4), it follows from Example 4.1.7(b) that each m; ; is divisible by
n;. Hence there is a unique map o: {1,...,7} — {1,...,r} such that m,@;; = n; and my ; = 0
for i # o (i), and moreover D; = (D ;) )e,. It remains to show that o is bijective. It will suffice to
show that o is surjective.

For this, let S}, := ®;c,-1(1y€s5€;i, so that S = @yS;,. The restriction of Dj, to S}, is zero if
i" # 4, and the restriction of D}, to S, is a pseudocharacter with

4.3.8
m; > dim D;/ |S;, = dim @;//leg// |S;, = dim det(&‘g) ‘S;, = Z ng.
ico—1(i")

Summing over all ¢’ in the image of ¢ implies Zi’EU({l,...,r}) m; > n. However, all m; are strictly
positive and ZZ,:l m; = n, and this implies that o is surjective, and hence the claim is proved.

For simplicity of notation we assume from here on, without loss of generality, that o = id. We
now show that I = 0. For this, it suffices to show that A; ;.A;; = 0 for all i # j. By restricting to
the subalgebra S’ = e;Se; + ¢e;5¢; + e;Se; + e;Se; with £ = (e;, ¥, €;,1;,), i.e., by considering
De, t¢;, and using det(g ¢ |s: = det(gs ¢y, we may assume 7 = 2 for the proof of I = 0.

Let b be in A; 2 and ¢ in As 1, and write « for elEll’le%’leg and y for egEzl’lcEll’lel with Ezkl

from Notation 4.3.2. Using the description of GMA’s from Lemma 4.3.3 one easily verifies that
l4+zy=1+ Ell’lbc c€eSer+(1—e1), 1+yx=1+ E21’1bc € (1 —e3) + exSes.
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4 PSEUDOCHARACTERS AND THEIR DEFORMATIONS

Note moreover that by Lemma 4.3.6 we have D(1 4+ zy) = D(1 4+ yz) for every pseudocharacter
D: S — A. If we apply this to Dj and our earlier observations on (Dj).,,, we find that

Di(1+ay) = Dy (1 +yz) = (D})e, (1 = e2) - (Df)ey (€2 + By be) = 1-1 =1,

and similarly D5(1 4+ xy) = 1, and hence from hypothesis (2) that detg &) (1 + E}'be) = 1. From
the formula for det(g ¢) on e;Se; + eaSex = Maty, xpn, (A) X Mat,,xn, (A), we deduce that

det(s.g)(1+ Ey'be) = 1 + b,

and hence that bc = 0, as was to be shown.

For the second assertion, observe that by Lemma 4.3.7 we have D}(1+ e;xe;) = 1 for any i # j
and & € Maty, xn, (A; ;). It follows that Dj(1 +u) = 1 for any u in the kernel of 7. And now the
second assertion follows from knowing the restriction of D] to >_, e;Se; given in the first claim of
the proof of (b). O

The following result of Chenevier gives an application of GMA’s to pseudocharacters.

Theorem 4.3.10 ([Chel4, Thm. 2.22],[WE13, Thm. 2.27]). Assume that A is a henselian local
ring with mazimal ideal my and residue field k(A). Let S be an A-algebra and suppose that
D € PsR%(A) is Cayley-Hamilton. Denote by D = D ®4 k(A): S/maS — k(A) the residual
pseudocharacter of D. Suppose that D is split (see Definition 4.1.19). Then the following hold:

(a) If D is irreducible, then D = det op for some A-algebra isomorphism p: S = Mat,,x,, (A).

(b) If D is multiplicity free, then S is a generalized matriz algebra (S,€) and D = det(sey. If
D= @221 D; for irreducible D;, then the type of S is (n1,...,n;) for n; the degree of D;.

4.4 Continuous pseudocharacters

In our application, mainly continuous pseudocharacters (of a profinite group G) will play a role.
In this subsection we will recall this concept and some of its properties. We denote throughout
this subsection by G a profinite group. Let us refer to [Gro60, Ch. 0 § 7, Ch. 1 § 10] for a more
thorough introduction to topological rings and formal schemes.

We introduce in Definition 4.4.2 a category of admissible x-algebras that is perhaps not standard.
In Proposition 4.4.7 we prove a finiteness statement for continuous pseudocharacters on G with
K p-adic and values in a finite field of characteristic p.

Definition 4.4.1 (Cf. [Chel4, § 2.30]). Let A be a commutative topological ring. Then D €
PsRE(A) is called continuous if and only if the characteristic polynomial functions (restricted to
G) Ap,i: G — A are continuous for i =1,...,n.

We shall study continuity only for two types of commutative rings A that we now describe.
Consider a directed set J with minimal element 0 and an inverse system Ay, A € J, of topological
commutative rings with continuous transition maps and such that Ay — A is surjective with
nilpotent kernel for any A € J. Then the inverse limit

lim A 19

reJ A ( )
is a topological ring with respect to the weakest topology for which the projections to all Ay are
continuous.
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Definition 4.4.2. Let k be a local or a finite field with its natural topology.

(a) We say that a commutative topological ring A is k-admissible if there is an inverse system
(Ax)res as above (19) and an isomorphism of topological rings A = limyey Ay such that
each Ay is a finite-dimensional topological k-algebra with the natural topology of a finite
dimensional k-vector space.

(b) We denote by Adm, the category whose objects are k-admissible commutative topological
rings and whose morphisms are continuous k-algebra homomorphisms.

Note that .Zm is a full subcategory of Adm,; but objects in Adm, are in general only semilocal,
and with residue field of finite k-dimension.

Definition 4.4.3 ([Chel4, § 3.9]). Let W(IF) be the topological ring of Witt vectors over F.

(a) A commutative topological ring A is admissible if there is an inverse system (Ax)xes as above
(19) and an isomorphism of topological rings A = limyey Ay such that each Ay carries the
discrete topology.

(b) We denote by Admyy ) the category whose objects are admissible commutative topological
rings A together with a continuous homomorphism W (F) — A and whose morphisms are
continuous W (F)-algebra homomorphisms.

Remark 4.4.4. Suppose A is admissible or k-admissible, and suppose that A = limyc; Ay for an
inverse system (Ay)es as in the above definitions. Then one can form the completed group ring

as the inverse limit
A[IC]) = tim A, [G/H],

where H ranges over all open normal subgroups of G} it contains A[G] and is in fact the completion
of A[G] with respect to the topology of A[G] inherited from A[[G]].

Using Amitsur’s formula, one can verify that the above definition of continuity is equivalent
to the condition that for every commutative topological A-algebra B, with B € Adm or Adm,,
respectively, the map Dp: B[G] — B is continuous; see [WE13, Def. 3.1.0.10]. This allows one also
to extend Dp to a (continuous) pseudocharacter B[[G]] — B.

The following is the basic result on continuity if A is discrete.

Lemma 4.4.5 ([Chel4, Lem. 2.33]). Let A be a discrete and let D: A[G] — A be a pseudocharacter.
Then D is continuous if and only if ker (D) is contained in the kernel of the canonical map A[G] —
A[G/H] for some normal open subgroup H C G. In this case, the natural representation G —
(B[G]/ ker (D))* factors through G/H.

We record the following consequence:

Corollary 4.4.6 ([Chel4, Exem. 2.34]). Let k be a discrete field and let D € PsR%(k*8) be contin-
uous. Then the representation pp: Gx — GL, (k®) associated by Theorem 4.1.18 is continuous,
its image is finite and it is defined over a finite extension of k.

Proof. We provide a proof, expanding on [Chel4, Exem. 2.34]: Because D is continuous, we know
by Lemma 4.4.5 that ker D contains the kernel of k[G] — k[G/H] for some open subgroup H of G.
By Theorem 4.1.18, the kernels of p!i and of D are the same, and hence pp is continuous since it
is trivial on the open subgroup H. Since G/H is finite, this also shows that pp(G) C GL,, (k*#) is
finite. It follows that the entries of the matrices in the image of pp lie in a finite extension of k,
and this proves the last assertion. O
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When combined with earlier results, we deduce the following finiteness statement:

Proposition 4.4.7. Let F be a finite field of characteristic p and let n > 1 be an integer. Then
there exist only finitely many continuous pseudocharacters D: G — F on G of dimension n.

Denote by F' O F the unique field extension of degree n!. Then for any D as above D ®p F' is
a direct sum of split irreducible pseudocharacters D;: G — F' on G.

Proof. The second part is immediate from Corollary 4.1.20. Hence it suffices to prove the first part
for split irreducible D. It moreover suffices to assume that F contains the unique extension of the
residue field of K of degree n!. The result follows from Lemma A.3.1. O

The next result shows the existence of a minimal ring of definition for any continuous pseu-
docharacter, and it gives an important result on their structure.

Lemma 4.4.8 ([Chel4, Lem. 3.10]). Let A be in Admy ), let D: A[G] — A be a continuous
pseudocharacter, and let C C A be the closure of the W (F)-algebra generated by the characteristic
polynomial coefficients Ap ;(g) for g € G and i > 1.

(a) The ring C is an admissible profinite subring of A. In particular, C = @Z C; is a finite
product of local W (IF)-algebras with finite residue fields.

(b) If further 1: A — A’ is a continuous W (FF)-algebra homomorphism, D': A'|G] — A’ is the
induced pseudocharacter and C' C A’ is the closure C' C A’ of the W (FF)-algebra generated
by the characteristic polynomial coefficients Ap: ;(g) for g € G and i > 1, then ¢ induces a
surjection C' — C' in Admyy (py.

We use the Lemma 4.4.8 to make the following useful definitions.

Definition 4.4.9 ([Chel4, Def. 3.11]). For a finite field F one defines
|G(n)| := {z € Spec( %ﬂ(;‘)[a],n) . z is closed and k(z) is finite}.

Definition 4.4.10 ([Chel4, Def. 3.12]). Let A be in Admyy (g, let D € PsRE(A) be continuous,
let C C A be the ring from Lemma 4.4.8 and let Do: C[G] — C be the pseudocharacter from
Proposition 4.1.10.

(a) We call C the ring of definition of D over W (F).
(b) If C is local, so that k(C) is finite, one calls D residually constant.
(c) One calls D residually equal to D, for some z € |G(n)|, if C is local and D, = D¢ ®¢ k(C).

4.5 Twisting of pseudocharacters

In this subsection, we introduce a twisting operation for pseudocharacters that is the analog of the
twist of a representation by a character, and we state some of its basic properties. Our approach
require us to recall a number of results on the universal pseudocharacter that go back to Roby. Our
main construction is only carried out for pseudocharacter of a topological group G. Our exposition
of background material follows [WE13, Section 1.1].

Definition 4.5.1. Let M be an A-module. The divided power algebra of M relative to A is the
commutative A-algebra T 4(M) that is the quotient algebra of the polynomial algebra generated by
the symbols mlll, m € M, i € N, subject to the relations
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(i) ml =1 for allm € M,
(ii) (am)l = a*ml forac A, me M, i €N,
(iii) mlmbl = (“Fml+) form e M, i,j € N and
(iv) (m+n)l = Z;:o mbnli=il for m,n € M and i € N,
The ring T'4(M) is a graded A-algebra T'4(M) = @5, Ty (M) with its i-th graded piece T (M)
being the A-module generated by the element ml, m € M. The construction M + T' 4 (M) defines
a functor from A-modules to graded A-algebras. If p: M — N is an A-module homomorphism,

the induced map T'4(¢): Ta(M) — T4(N) is characterized by ml! — (p(m))l], m € M, i € N.
One has compatibility with base change, i.e., natural isomorphisms T'% (M) ®4 B = T%(M ®4 B).

Definition 4.5.2. The universal degree d homogenous polynomial law L%, € P4(M,T'%4(M)) is
defined by the maps

Ly p: M®aB—TH(M)@aB=Tp(M®4B),m@br (bm)), meMbeB.
The universality of L% is expressed by the following result:

Theorem 4.5.3 ([Rob63, Thme. IV.1]). Let M, N be two A-modules and let d be in N. There is
a canonical isomorphism

Hom (T4 (M), N) = P4(M,N), f — f o L%,.

To describe the map in the converse direction, let P € P4(M, N). Define the index set I :=
{a = (ag,...,aq) € N¢ | Ya; = d}. Given a = (a1,...,aq) € I set T = nglTjaj for
indeterminates (T%,...,Ty), and set m!® = szl mgai] € T4 (M) for m = (my,...,mq) € M%
Define now for all o € Iy simultaneously maps P: M9 — N by

PA[Tl,..A,Td] (T1m1 + ...+ Tdmd) = Z P[O‘] (m)Ta

acly

for m = (my,...,mg) € M. In the proof of Theorem 4.5.3 by Roby, it is shown that given any
P € P4(M, N), there exists an A-module homomorphism f: T'% (M) — N such that

F(mly = Pll(m), Va € I, and m € M9, (20)

and that fo LY, = P.
If M is a free A-module, the A-module T'% (M) has the following explicit description.

Theorem 4.5.4 ([Rob63, Thme. IV.2]). Suppose that M is a free A-module with basis (e;)icr.
Then for d € N, the A-module T4 (M) is free with basis

h
{eg’jﬂ....-ey;h] |h €N, (iy,...,in) € I", (ky,. .. kn) eNzl,Zkh:d}.

j=1

If M is an A-algebra R, then [Rob80] defines an A-algebra structure on each I'Y (R), different
from that on T'4(R), by defining a multiplication '} (R) ®4 I'% (R) — 'Y (R), that we now recall.
The multiplication map is defined as the composition of two maps. The first map exists for any
A-module M, the second is built from the ring structure of R. Let first M be an arbitrary A-
module. Then the map Sy: MM — M ®4 M, (m,m') = m®@m’ is a homogeneous polynomial
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law of degree 2, and thus L}, © Bas lies in P3(M @& M, M ® M). By Theorem 4.5.3 we have
L‘fw@)M ofpm =nmo L?VCII@M for a unique A-linear map

nar: T2H(M @ M) — T4 (M @4 M).

[Rob63, Thme. ITL.4] gives an isomorphism @_, T (M) @ T *(M) — T4 (M) for any e € N. Tt is
further shown in [Rob80, p. 869] that the maps T (M) ® T (M) — T4 (M ® M) induced from
nar are zero for i # d, and that the induced map 7y : T4 (M) @ T4 (M) — T4 (M @ M) is given by
the explicit formula

v (ml @nl) = 30 I n@ny)bl, (21)

veMat$;?, (N) (6:5)€4L,...,d}?

for m,n € M?, o, € I;, and where Matg"xﬁd(N) denotes the set of all matrices v = (v;5) in
Matgxq(N) whose rows sum to 3 and whose columns sum to . Let now M = R be an A-algebra.
Then the multiplication map pur: R ®4 R — R is A-linear, and thus it induces a graded map
T a(ur) whose d-th graded piece is a homomorphism T'% (ug): I'4 (R® R) — 'Y (R). Roby defines

pi = T4(ur) o r: T4A(R) @4 T4 (R) = T4(R)

It is shown in [Rob80, p. 870] that if R is unital, associative or commutative, respectively, then
the same property holds for I'Y (R) with the multiplication u‘}%, for any d € N. It turns out that
LdR is multiplicative with respect to this multiplication on FdA(R). The key result is the following
description of multiplicative polynomial laws:

Theorem 4.5.5 ([Rob80, Thme.]). For A-algebras S, S’, the following map is a bijection
Homazg(T4(8), 8) = M4(S. 5), f > f o L.

Suppose now that R = A[G] for a group G. Note that the elements of G form an A-basis of
A[G], and hence an A-basis of I'; (A[G]) is described in Theorem 4.5.4. Let D: A[G] — A be a
pseudocharacter of dimension d. From Theorems 4.5.3 and 4.5.5, und using (20), we deduce:

Proposition 4.5.6. There exists a unique homomorphism fp: I'Y(A[G]) — A such that
ip (g[o‘]) = plel (9), Va€lyandge G
It is multiplicative for the product on T4 (A[G]) given by u%[G].

Let now x: G — A* be a group homomorphism. Define for a« = (ai,...,a4) and g =
(91,...,94) € G? the notation x(g!*) to by x(gl*) := H?Zl x(g:)%. Because {gl* | a € I;,9 €
G?} is a basis of 'Y (A[G]) we have a unique A-linear map fp ,: I'4(A[G]) — A such that

fox(g) = Dll(g) - x(g!*), Vo €I,and ge G

Proposition 4.5.7. Suppose that D € PsRE(A) and that x: G — A is a group homomorphism.
Then the following hold:
(a) The map fp, defined above is multiplicative.

Define the d-dimensional pseudocharacter D @ x to be fp o Lj[G].
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(b) The characteristic polynomial coefficients of D ® x satisfy the identities

Apgy,i(9) = Ap,i(g) - X(g)i for alli and all g € G.

(¢) If D and x are continuous, then so is D ® x.
(d) If D = D, for a representation p of G, then D ® x = D,g,.

Proof. To see Part (a) we need to show that fp(9-h) = fp(9)fp,x(h) for g = (91,...,94),h =
(h1,...,hq) € G* and for - the multiplication given by ”Z[G]' Using (21) we compute

gl plB = Mj{g}(ﬁM(g[a]Q@h[m)) — ufi[c]( 3 I1 (gi®hj)m])

’YEMata’ﬁ (N) (7;7j)€{1""’d}2
> I (@bl

axd
yeMat§2 (N) (6,7)€{1,....d}?

Observe that >, ;v = d for v € Matg"fd(N), and that index pairs (4, j) with v;; = 0 can be
ignored. We write v for the flattening of v truncated to length d, i.e., we first regard v as a
d?-tuple in one index and then omit the highest d?> — d indices where 7i; = 0. Using in (x) the
definition of Mat%;”,(N), we find

IENCEU D DR N (I | )

veMatg;/, (N) (i,§)€{1,...,d}2

> p@h)eae)( TT xohs)™)

7EMat;f, (N) (e d?
= > DU((gihy) ey X)) x (AP
veMat$?, (N)
_ X(g[a])X(h[B])fD(g[a] .h[B])
multipl. @ a [t
T (g B £ () Fo (B = fo (g f ().

—
*
~

Concerning (b), note that

d

Dyr(1-Tg') = DA[TI,...,Td](Zﬂgi) lg=(e,....e.9"),T=(1,0,...,0,T7)>
i=1
so that
Apeyi(g) = (1) (D@x)l="0 0, e g)
_ (_1)zl)[d—1707...,0,1](e’'“7679/)X((€7 ,e,g')[d_l 0, 01])
= (_1)1D[d_1707m’071] (e’ ) evgl)X(g)z - AD,i(g/)X(g)z'

Part (c) follows from (b) and Definition 4.4.1, Part (d) follows from (b) and the theorem of
Brauer-Nesbitt. O

Definition 4.5.8 (Twist of pseudocharacters). We call the multiplicative polynomial law D ® x €
PsRE(A) from Proposition 4.5.7 the twist of D by x.
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4 PSEUDOCHARACTERS AND THEIR DEFORMATIONS

Remark 4.5.9. It should be interesting to define the tensor product of two pseudocharacters of any
dimensions n,n’.

Lemma 4.5.10. Let D, D’ be in PsRE(A) and let x: G — A* be a group homomorphism. Then
D'=D®x if and only if Ap/(9) = Ap.i(g) - x(g)" for alli and all g € G.

Proof. Proposition 4.5.7(b) shows that the condition given is necessary. That it is also sufficient
follows from Proposition 4.1.10(a), which says that a pseudocharacter is determined by its charac-
teristic polynomial coefficients. O

Corollary 4.5.11. Let D be in PsRE(A) and let x: G — A* be a character of finite order.
Suppose that x(g) — 1 lies in A* whenever g € G \ ker x. Then the following hold:
(a) D =D ® x if and only if

Vge G,Vi=0,...,n:Ap,(g) =0 or ord x(g) divides i.
(b) Let I be the ideal of A generated by the set

{Ap.i(g) : (9,%) € G x{1,...,n} such that ord x(g) fi}.
Then the locus of Spec A on which D = D & x is the closed subscheme Spec A/I.

Proof. To see Part (a), note that by Lemma 4.5.10 we have D = D ® x if and only if
Ap.i(9) =Ap.i(g)-x'(g) foralliandall g€ G.

Since 1 — x%(g) is a unit in AX whenever ord x(g) 1 4, and is zero otherwise, the latter is clearly
equivalent to the condition given in the corollary.
By Part (a) we have for any ideal J of A

(DRaA/J)@x=D®s A/ <<= ICJ,

and this implies Part (b). O

4.6 Induction for pseudocharacters

In this subsection we introduce the operation of inducing a pseudocharacter from a finite index
subgroup. The main result is Theorem 4.6.7. Following a suggestion of the referee, we describe
a construction that works in all cases.® The idea is a pullback to a universal situation. For this
we use Theorem A.4.4 which is a variant of an important result of Vaccarino. The uniqueness of
the construction, i.e., its characterizing property, is guaranteed by explicit formulas for the char-
acteristic polynomial of the induction. The present subsection begins by recalling the construction
of induction of a representation and then analyzes it to give in Lemma 4.6.6 a formula for the
resulting characteristic polynomial. This is then used in the main result, Theorem 4.6.7.

We fix a group G and a subgroup H C G of finite index m. As in Section 2, we set N :=
N 9EG/H H9. Tt is of finite index and normal in G, and the largest such subgroup contained in H.
If G is a profinite group, we require H to be open, and then N C G is open, as well.

6In an earlier version, using a different argument, our construction had some technical limitations, but was
nevertheless sufficient for the main result of this work.
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4. Induction for pseudocharacters

Lemma 4.6.1. Let C be an Azumaya A-algebra. Consider a representation p: H — C*. There
exists a representation p*: G — GL,,,(C)* such that for any étale extension A — A’ that splits C,
there is an isomorphism p* ©4 A’ = Ind$(p @4 A') of G-representations over A.

The linearization (p*)'™: A[G] — Matyxm(C) of p* takes values in the Azumaya algebra
Mat,,xm (C), and by Example 4.1.7 the associated pseudocharacter D« takes values in A.

Proof. To prove the lemma, we adapt the description of the induced matrix representation from
[CR81, pp. 227-230] to the setting of Azumaya algebras. Let ¢1,...,gm be a set of representatives
of left cosets of G/H so that G = | |\, g;H. We extend p from H to G by defining

~. plg) ifgeH,
il —0C QH{ 0 ifge G~ H.

Consider the map

plgrtgg) -+ plgr 99m)
P G — Matyxm(C), g— : :

plgmtagr) - plgm'99m)

Define for g € G and j € {1,...,m} the element i; € {1,...,m} by the condition gg; H = g;, H, so
that the map j +— 4, is a permutation of {1,...,m}. This shows that p*(g) is a monomial matrix
over the skew field C' which in each column j has a unique non-zero entry p(gi; ! gg;) € C* in row
i;. In particular, this also shows that p*(g) lies in GL,,(C).

We claim that p* has the properties asserted in the lemma. Let A — A’ be finite étale so that
C ®4 A" = Mat, «,(A") for a suitable » € N>;. Then by our construction, that follows [CR81],
p* @4 A’ is the matrix representation of the induced representation of

p@4 At H— GL,(4)).

This implies the multiplicativity of the map p*, i.e., that it is a homomorphism. Moreover, it shows
that p* ® 4 A’ is the usual induced representation of p ®4 A’. O

Remark 4.6.2. It can be shown that p — p* in Lemma 4.6.1 is uniquely characterized as the
right adjoint of the restriction homomorphism from G-representations to H-representations on
Azumaya algebras. In particular, up to isomorphism p* is independent of the chosen representatives
g1y 9m of G/H.

Definition 4.6.3. We call p* from Lemma 4.6.1 the representation induced from p under H C GG
and denote it by Indfl p.

The reason for introducing induction with Azumaya algebra coefficients is to be able to formulate
Theorem 4.6.7(e); see Remark 4.6.9.

Ezxample 4.6.4. Since we have just seen an explicit form of p*, for later use we consider the
following example: Let H C G be a normal subgroup of index p. Fix go € G \ H and set g; := g}
fori=1,...,p, so that G = | |V_, ¢; H and the map

\:G/H = Z)(p),gsH i (mod p)

is a group isomorphism. Let C' be an Azumaya E-algebra for a field E of characteristic p and let
p: H — C* be a representation. Define the induced representation p*: G — Mat,x,(C)* as in
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4 PSEUDOCHARACTERS AND THEIR DEFORMATIONS

the above proof. Let A € Mat,x,(C) be the diagonal matrix with diagonal (i-1¢)i=o,... p—1. Then
we claim that one has for all g € G the relation

p*(g)Ap*(g_l) —A= _)\(g)lMathp(C)'

The reader is advised to compare this with Lemma 2.3.2. The claim asserts that A defines a
non-trivial class in H%(G, C/E) with G acting on C'/E via the adjoint representation of p.

To prove the claim, let g € G. We shall verify p*(g)A — Ap*(9) = A(g)p*(g). Observe that
ﬁ(g;lggj) = ﬁ(gaiggg) =0 unless gH = géﬁjH, i.e., unless A(g) =i — 7. In the following, we write
a lower subscript ; ; to indicate the (i, j)-entry of a matrix in Mat,,(C). Then

(P (DA—Ap*(9)iy = P (ij-d—ip (@i = (G—1) plgg 990
PEY Mg 0 (9)igs

and this completes the proof of our assertion, and ends our example.

Presumably formulas for the characteristic polynomial of Indgp are well-known. But we
could not locate suitable references. So we develop this from scratch. We need to fix some
notation: Let C be an Azumaya A-algebra of degree m. Recall from Reminder 4.1.6 that el-
ements ¢ € C have a reduced characteristic polynomial x.; we define its coeflicients A.; by
Xe(t) = Y8 o(=1) Aqi(e)t" " We write x7* for the reduced characteristic polynomial (of de-
gree nm) of an element ¢ € Mat, xm (C).

Lemma 4.6.5. Let ¢ = (c; ;) be in Mat,xnm(C). Suppose that there is a permutation o € Sy,
such that c¢; j = 0 fori # o(j) and such that c,;) ; lies in C* for all j. Then x7* has the following
description:

Write o in its cycle decomposition o = o1 - ... - 0,, where the o; are disjoint cycles of length m;
such that y,_, my = m, and let j; be in the support of o; such that oy = (ji,o(j1),...,0™ 1 (j)).
Then

XT(t) = H Xc(l) (tml) wzth C(l) = tho.ml—1(jl)00.ml—1(jl)’o.ml—2(jl) Cee cO’(jl),jl
=1

Proof. Let s = m1 + ... +my_q for l = 1,... v, with s = myp = 0, and let 7 € S,, be the
permutation whose inverse is given by

<51+1 s1+2 -+ s14+my ) _(sv+1 Sp+2 - Sy My )
s o) e a™TG) )T joo o) o ™) )7
and let p = p; in Maty,xm(C) be the permutation matrix attached to 7, i.e., with p; ; = 0 for

i # 7(j) and p;(jy,; = 1c for all j. Then one verifies that prepytis a block diagonal matrix in
Mat,, . (C) with v blocks on the diagonal, the I*! block lies in Mat,,, xm, (C) and is of the form

0 0 c

Ji,0™ ()
Co(ji) i 0 0
B, = 0

Co2(j51),0 (1)

0 0 Camlfl(jl),aml*%jl) 0
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4. Induction for pseudocharacters

By conjugating B; with the block diagonal matrix with entry at spot (i,i) the block given by

Coi=1(j1),01-2(j)) * Coi=2(ji),0i~1(j1) * -+ " Co(ji).jus 5O that at (1,1) the entry is 1, the matrix By is
transferred to the block companion matrix
0 0 c(l)
1 0 0
Bi=1o0 1
0O ... 0 1 0

It suffices by a genericity argument to assume that A is an algebraically closed field, so that C
is split over A. Then the claim that B; has characteristic polynomial . (t™) is a simple linear
algebra calculation. In the case when c(l) is a diagonal matrix, after an obvious change of basis
B] becomes the direct sum of standard companion matrices each with the same type of last row
as B; and hence with characteristic polynomial ™ — ¢(l); ;, so that one finds xp, (t) = xcq) (™).
In the general case one uses that semisimple matrices are dense open in the set of all matrices, or
a devissage argument once ¢(l) is in Jordan form.

A more heuristic argument for xp, (t) = x@)(t™) runs as follows: The matrix B is block
scalar with diagonal scalar factor ¢(l) € C*. So by the Cayley-Hamilton theorem B, is annihilated
by xc@)(t), and hence B; is annihilated by x.q)(t™ ), and for a generic ¢(I) one would expect
Xe() (™) to be the minimal polynomial of B;. O

Lemma 4.6.6. Let the hypotheses be as in Lemma 4.6.1 with N C H C G, and let g € G.
Let vg1 € G, 1l =1,...,vq, form a set of representatives for the double coset space (g)\G/H, so
that G = |_|i:1,_“7vg (g1 H, and let my = [(9)7vg:H : H], so that m; > 0 is minimal such that
g™ vg H =74, H. Then one has

Xlndg p(g) (t) = H Xp(ry;ll.gml.ygfl)(tml)'

I=1,...,vq4

Moreover, on any left coset ¢'N, ¢ € G, the map g — vy is constant, and the double cosets
space (g)\G/H s independent of g, and hence so are the my, and also one can choose uniform
representatives vq,; for (9)\G/H, independently of g € ¢'N .

If H is normal in G, the double coset space (g)\G/H ‘s in bijection with the right coset space
(9)H\G, and so vy = |G : (g)H] and m; = m/ := ord ¢,u(gH) is independent of I.

Proof. We first recall the construction of Indg p from the proof of Lemma 4.6.1. As a convenient
set of coset representatives for G/H we take |_|l=1,_“7vg{gjfyg7l 27 =0,...,m — 1}. With this
choice p*(g) is already in block diagonal form with v, blocks and the size of the I-th block is
my. Moreover, by explicit computation, one finds that the [-th block has non-zero entries only
at index pairs (4,5 — 1), j = 2,...,my, where the entry is 1 € C, and at (1,m;), where the
entry is ,o(’y;l1 9™ 74.1). The asserted formula is now an immediate consequence of the formula in
Lemma 4.6.5.

Concerning the constancy statement for all g in a fixed coset g’ N, observe that all assertions
follow from the following observation: Let § = gn for some n € N and let (g)yH be a double coset
for some v € G. Then by normality of N in G and using N C H, we have

§'vyH = §'yNH = §’NvH = ¢'NvH = g'vH,
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4 PSEUDOCHARACTERS AND THEIR DEFORMATIONS

and thus we have equality of double cosets (¢')yH = (g)yH. The remaining assertions when H is
normal in G we leave as exercises to the reader. U

Let now
Dy: B[H— B

be a pseudocharacter of dimension n with values in a commutative ring B. If G is a profinite group,
we assume that Dy is continuous. The following result establishes the existence of the induction
of DH.

Theorem 4.6.7. There exists a unique pseudocharacter Dg: B|G] — B whose characteristic
polynomial for each g € G is given as follows: Let vg;, I =1,...,v4, be elements of G that form a
set of representatives for the double coset space (g)\G/H, and define m; = [(9)v4,H : H|. Then

XDg,B(9:1) = H XDH,B(V;Z1 g™ g1, T, (22)
1=1

The pseudocharacter Dg has the following properties.

(a) One has
Res% Dg = @ (Resf{, DH)g.
geG/H
(b) For any left coset ¢’ N, ¢’ € G, in formula (22) the value of vy and the elements ~y,,; can be
taken independent of g € ¢’ N. Hence if G is profinite and Dy is continuous, then so is Dg.

(¢) The formation of Dg commutes with base change, i.e., the following holds: Let B — B’ be
any homomorphism. Set Dy := Dy ®p B’ and D, := Dg ®p B’. Then (22) holds with Dy
and D¢ replaced by D7 and Dy, respectively.

(d) For any geometric point T — Spec B the representations pp,, , is isomorphic to the semisim-
plification of Ind$, PDir -

(e) Suppose U = Spec B’ C Spec B is affine open such that Dy , is irreducible for all x € U
and set Dy = Dy ®p B’ and C := B’[G]/ CH(DY;), so that by Proposition 4.1.25, C' is an
Azumaya B-algebra and 1 = pSH : G — C* is a representation such that detc o) = Dy
Then for Tnd$ ¢: G — GL,y,(C)* from Definition 4.6.3, we have

Dg ®p B' = Dipyg 4.

(f) One has Dg = Dg ® x for any character x: G — B* whose kernel contains H.

(g) Suppose H is normalin G. Then xps,B(g,t) is a polynomial in torde/u(9H) - and in particular
its coefficients satisfy Apg,i(g) = 0 whenever ord ¢ (gH) 1 i.

Proof. Let us first consider the situation irrespective of any topology, i.e., G is an abstract group
and Dy : B[H] — B is a pseudocharacter on H of a finite index subgroup. Let 7: FG(X) — G
be a surjective group homomorphism from the free group on a suitable set of symbols X. By
the Nielsen-Schreier Theorem, any subgroup of FG(X) is free again, and so let Xz C FG(X) be
a subset of free generators of 7= 1(H), and write 7g: FG(Xg) — H for the restriction of 7 to
7 Y(H).

Recall from Theorem A.4.4 the following description of the universal pseudocharacter of the
group ring Z{X#} = Z[FG(Xy)]. Let in(n) =2 v € X, 1<i,j< n][m cx € Xyl
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be the commutative Z-algebra of the coefficients of the generic invertible n X n-matrices £, =
(&2,i5)ij=1,..n € Matan(FX§ (n)) of all z € Xg. Define the representation

Pxi: Z{XEY — Matnxn(Fxﬁ (n)), x> &,
: +
and let Eys (n) be the subring of Fyz (n) generated by det opxi (Z{X};}). Then by Theorem A.4.4
D+ :=detopys: Z{XEY — Eys (n)

is the universal n-dimensional pseudocharacter of Z{Xﬁ} (up to isomorphism).
Let a: E X3 (n) — B be the unique ring homomorphism (by universality of D X§)7 such that

aODX§ =DgoTy: Z{X;} — B. Define

FCG(X FG(X
IndFGEXL) Dys = det OIndFGEXL) Pxi: Z{X*} — Fys (n)
with Indgggi) as in Lemma 4.6.1. Now Lemma 4.6.6 shows that all characteristic polynomials of

elements in FG(X) lie in Exs (n), and it follows from [Chel4, Cor. 1.14] (a consequence of Amitsur’s

formula) that Indgggz) D+ has ring of definition contained in Ey+ (n), and we regard it as a
pseudocharacter

FG(X
Indpciyyy Dyt s Z{X*} — By (n).

We now claim that the composition

FG(X
oo Indga i)y Dys: Z{X*} — B
has kernel containing K = Ker(w: FG(X) — G). For this note first that by Lemma 2.1.4(b) we
have
FG(X) FG(X) o FG(Xgx) g
Res “i(vy Indpg (xy) Pxz: = @ (Resﬂ,l(l\f) PX,%,) :
geG/H

for g € FG(Xpg) a preimage of g under w. If we compose the equation with det and «, this gives

Rest () (a0 mdpGx) Dy ) = @ (Reski Du)’ o, (23)
geG/H

The kernel of the right hand side clearly contains K, and this proves the claim. As a consequence

FO(X) D+ factors via m: FG(X) — G, and using Proposition 4.1.16 we define

ao IndFG(XH)

Da: G — B

as the unique pseudocharacter such that Dgom = a0 Indgggi{)

struction and by Lemma 4.6.6, Indgggz{) D X satisfies formula (22) and the formula is preserved

under composition with «, and under passage via 7 from FG(X) to G. This implies formula (22) for

DX; Note that by its very con-

D¢. Since by Proposition 4.1.10 the characteristic polynomial xp,, (-,t) completely characterizes
D¢, the required uniqueness of D¢ is also shown.

We now prove Parts (a) to (f). Part (a) follows from (23) and our definition of D¢g. The first
part of (b) follows from the construction of D¢ and Lemma 4.6.6. To prove the continuity assertion
in (b), we need to show that the characteristic polynomial coefficients of D¢ are continuous. But
this follows from the first part of (b), formula (22) and the continuity hypothesis on Dy.
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Part (c) is immediate from our construction which is based via pullback to the induction
Indggg) yDx+ in a free group setting. To see (d) note first that by Part (c¢) formula (22) is
preserved under base change to x(Z), i.e., the formula holds if we replace simultaneously D¢ by
Dgz and Dy by Dyz. By its definition, pp, . has characteristic polynomial xp, ., and by
Lemma 4.6.6, the right hand side of (22) over (%) is equal to Xi4qg ,,- This proves (d). For
Part (e) note that over B’ we have equality of characteristic polynomials x, = x py, from Propo-
sition 4.1.25. Using Lemma 4.6.6 for Ind$ ¢ and formula (22) and Part (c) for D', we deduce
XDe®pB/,B' = Xind§ > and hence Part (e).

The proof of (f) will follow after pullback to FG(X). To carry this out, let d be the order of x
and Z[x] the extension of Z obtained by adjoining a primitive d-th root of unity. In an analogous
way, we define Fx=+(n)[x] and Ex=+(n)[x] and we extend a: Ex+(n) — B to a homomorphism
a: Ex+(n)[x] = B. Let now xg: G — Ex=(n) be the unique character such that «oxg = x. By
surjectivity of 7 (and by applying «), it will suffice to show that

Xp ®Indpay)) Dys = Indgg () Dys
But by construction of DXi and Proposition 4.5.7(d) this reduces to the same formula with PxEs
and this formula holds by Mackey s Tensor Product Theorem formulated in Lemma 2.1.3.
Finally, Part (g) follows from the last part of Lemma 4.6.6: The normality of H in G implies

that m; = ord g/ (gH) for all | = 1,...,v,, and so the formula for XIndg y(t) in that lemma is

p(g
a polynomial in to"dc/u(9H) -

Definition 4.6.8. We call the pseudocharacter Dg from Theorem 4.6.7 the induced pseudochar-
acter of Dy under H C G and write Ind$, Dy for it.

Remark 4.6.9. Our construction of Indg Dy does not need the generality of Azumaya algebra
coeflicients in Definition 4.6.3. However over the absolutely irreducible locus of Dpg, one has an
elementary construction of induction indicated in Theorem 4.6.7(e). In fact, if B is for instance
reduced and noetherian and if the set U in Theorem 4.6.7(e) is dense in Spec B, one can uniquely
reconstruct Indg Dy from this elementary construction. This approach had been pursued in an
earlier version of this work.

Remark 4.6.10. In our approach to Theorem 4.6.7 we strongly rely on the explicit but somewhat
technical formulas from Lemma 4.6.6. We use them to uniquely characterize the induction, once
FG(X)

FG(Xg) Dxf,
takes values in Ey + (n); initially the corresponding representation is only known to be defined over

existence is shown. We also use these formulas in the existence part to show that Ind

FX§ (n). V. Pagkuinas suggested in personal communication that perhaps one could avoid using

Lemma 4.6.6, at least for the unique characterization of Indg Dy . His remarks led to the following
discussion, which sketches an alternative proof of Theorem 4.6.7:

Suppose first that the target B of Dy: H — B is a domain, and let n be the generic point
of Spec B. Then Ind$ Dy is uniquely characterized by Theorem 4.6.7(d) for the geometric point
Z: Spec k(n)™® = Spec B, because it states that (Ind$ Dy;)z arises from Ind$ PDyrs-

To handle the case of general B in a similar way, one can regard induction as a functorial type
construction in the sense that for any group epimorphism ¢: G’ — G, any surjection of rings
a: B’ — B and any pseudocharacter D;,: H' — B’ with H' := ¢~ 1(H), such that a o D}; =
Dy o ¢, one requires that a o (Indg,, D’;) = (Ind$§ Dy) o ¢; this compatibility can be shown for
our construction. Assuming this compatibility, the uniqueness of Indg Dy follows from that of
nd$, D%y, for a suitable D%;,. And now one can apply the observation of the previous paragraph to
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the universal situation from the proof of Theorem 4.6.7 where D, = D+ and where B’ = EXi( )
is a domain. This shows that uniqueness follows from the stated functoriality and Theorem 4.6. 7(d)

Lastly we indicate how to deduce that Eys (n) is the ring of definition of Indgggl) Dy
without the use of Lemma 4.6.6. For this it suffices to assume that X is finite: To see this, let
Y C X be finite such that Y U Xy generates FG(X). Then one verifies that it suffices to consider
the restriction of D+ to FG(Y”) for all finite subsets Y’ C Y U Xy that contain Y. Assume now
that X is finite and, by possibly adding generators, that Xy contains at least n + 4 elements. We
also assume that Dy is of degree n > 1, and we set m = #Xpg, so that m > n + 4.

Consider the morphism 7: Spec FX;?; (n) — Spec EX§ (n). The ring EX§ (n) is a normal domain
because it is the ring of invariants under the connected reductive group GL,, of the normal domain
F xx(n (n). Let U C Spec F' XE (n) be the open subscheme over which the generic matrix representation
Pxi: Z{Xi} — Matan(FXFiI (n)),z +— &, is irreducible, cf. [Cheld, Example 2.20]. It is known
that U is dense in Spec F’ xE (n), and we will give a much stronger result in the next paragraph. It is
also known that the induced map U — V := #(U) is a PGL,,-torsor, and V' is open non-empty and
hence also dense in the integral scheme Spec E xE (n), see [Nak00, § 3 and Cor. 6.5]. It follows that
dim Eys (n) =dimV = 1+mn?—(n?—1) = (m—1)n?+2, because clearly dim Fys (n) = 1+mn?.

We claim that V' contains all points of codimension at most 1 of Spec E xE (n). For this we shall
show that the reducible locus Z := Spec F’ X (n)\U has dimension at most (m—1)n? from which it
follows that 7(Z) = Spec By (n)\V has codimension at least 2. Because Z is of finite type over Z,
it suffices to analyze the dimensions after base change from Z to an algebraically closed field k. Then
Px: is reducible at a closed point if and only if there is a proper parabolic subgroup P of GL,, that
contains the set of matrices py+(Xp), i.e. the set can by simultaneously conjugated by GL,, to a
standard parabolic P of GL,,. The stabilizer of this conjugation action is P itself and the dimension
of P is at most n? —n+ 1, and there are only finitely many such standard P once a maximal torus
and a Borel are chosen for GL,,. It follows that the dimension over k of the set of reducible points
is at most mdim P + (n? —dim P) = (m — 1)dim P +n? = (m — 1)n? — ((m — 1)(n — 1) — n?) and
the claim on dim Z follows from our hypothesis m > n + 4.

We now give an argument independent of Lemma 4.6.6 that show that Indgggz) D xE takes
values in EX}iI (n): Let Spec B C V be any affine open subset. Then by Proposition 4.1.25 the
pseudocharacter Dy : FG(Xp) — By (n) — B factors as a representation pg: FG(Xgy) — C*
for C' an Azumaya B-algebra of degree n followed by the pseudocharacter associated to C' in
Example 4.1.7. By change of coefficients to an algebraic closure K of the generic point of FXﬁ,

it follows that Indggg) ) PxE and Indggg) ) PB from Definition 4.6.3, are isomorphic over K.
FG(X)

Hence det o Indy Glxn) PxE takes values in B. But because V contains all points of codimension
at most 1 of the integral hormal scheme Spec B Xf,( n) it follows that the intersection of all such
rings B (inside Frac(EX;EI (n))) is equal to Eys (n), and we are done.

For later use, we formulate the following simple finiteness result related to induction.

Lemma 4.6.11. Let k be a field, let x: G — k> be a character of finite order m with kernel
H :=kerx, and let D be in PsRE(k¥#). Define

Sp = {D' € PsR}{™(k*'%) : Ind§; D' = D}.
Then the following hold:
(a) Sp is finite.
(b) Sp is nonempty if and only if D = D ® x.
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If moreover G is profinite, k& carries the discrete topology and D is continuous, then there is a
finite extension of k in k™8 over which all D' € Sp are defined and split.

Proof. By Theorem 4.1.18 and Corollary 4.4.6, the map p — D, from semisimple representations
of G over k*& to pseudocharacters of G over k*# is a bijection; and the same holds over H. We
also have D, ® x = D,g, by Proposition 4.5.7(d). Thus (a) and (b) are really assertions on
semisimple representations. Now if p is a representation and if p = Indg p’ for some representation
P, then p’ is a direct summand of the semisimple representation p|yz by Lemma 2.1.4. Since up
to isomorphism there are only finitely many such summands and since these are unique up to
permutation, Part (a) follows. Part (b) is now immediate from Corollary 2.2.2. The last assertion
is a consequence of Corollary 4.4.6 since Sp is finite. O

4.7 Pseudodeformations and their universal rings

This subsection recalls in Proposition 4.7.4 the main object of our interest, the universal pseudo-
deformation ring of a residual pseudocharacter D. Here continuity plays a major role. We state
basic results relevant to the present work. In addition to the usual treatment, we also give some
special attention to functors /Tm — Sets where « is a local field. The subsection also contains
some results on deformations over formal schemes and on the locus of irreducibility.

We let F be either a finite or a local field; in the former case A is a complete Noetherian local
commutative W (IF)-algebra with residue field F, in the latter case A = F. Recall the categories
Arp and .%TTA from Subsection 3.1 and the topological conditions we impose on there objects and
morphisms. By A we denote a ring in .ZTF; its maximal ideal is m4 and it comes with a natural
reduction map 74: A — A/my = F. We let G be a profinite group and we denote by D: F|G] — F
a continuous pseudocharacter of dimension n.

Definition 4.7.1 ((WE13, § 3.1.4.3]).  (a) A pseudodeformation of D to A is a continuous pseu-
docharacter D: A[G] — A such that D@4 F =740 D: F[G] — F is equal to D.

(b) The functor
PsDg: Ary — Sets, Avr— {D: G — A is a pseudodeformation of D},
is called the pseudodeformation functor of the residual pseudocharacter D.

Note that unlike in parts of [WE13] for us all pseudodeformations will be continuous.

Definition 4.7.2. Let m: B — F be a morphism in CAlgy and let D: B[G] — B be a pseudochar-
acter, such that D @ F = D.
An ideal I of B is called D-open if the following conditions hold:

(a) The map w factors via B/I and B/I is a local Artin ring.
(b) Dy :== D ®p B/I is continuous if we equip B/I with the topology of an object in Ary.

Lemma 4.7.3. With the notation from Definition 4.7.2, the D-open ideals form a basis of a
topology on B.

Proof. (Cf. [WE13, Thm. 3.1.4.6]) One has to show that if I, I’ are D-open ideals, then so is INI’.
Consider the injective homomorphism

v: B/(INI'y — B/I x B/I'.
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4. Pseudodeformations and their universal rings

For both A that we consider, it is straightforward to see that ¢ is a topological isomorphism onto
its image. Now a pseudocharacter is continuous if and only if this holds for its characteristic
polynomial functions; cf. Definition 4.4.1. Since both I and I’ are D-open, it is now immediate
that I N I’" is D-open. O

The following result is proved in [Chel4, Prop. 3.3] for A = W (F) and in [WE13, Thm. 3.1.4.6]
for A € ATV[/(F)

Proposition 4.7.4. The pseudodeformation functor PsDy is pro-representable a topological A-
algebra R“mV that is a filtered inverse limit of objects in Arp, together with a universal pseudode-
formatwn

univ , univ
DAE' G—>RA7D.

Proof. We recall a sketch of the proof from [WE13, Thm. 3.1.4.6] to indicate that it also applies to
the case when A = & is a local field. Consider the universal ring R‘“[“"] from Definition 4.2.2 with
its universal pseudocharacter D“"“" G — X?g]n on G. By definition X‘[lg]n is a A-algebra.
The map D induces a A-algebra hOmOmOI‘phlSm T RX‘[‘Q’]H — F. By Lemma 4.7.3, the D-open

niv

ideals of R}{r[‘gf] form the basis of a topology on RY A and one defines er%’ as the completion of
er[‘g] with respect to this topology. It is then straightforward to establish the asserted properties
for R“m" together with the pseudocharacter Dunlv = DXI[%}E ® R RX“B’, by verifying it for the
restrlctlon of PsDp to Ary. O

Definition 4.7.5. The ring R“m" from Proposition 4.7.4 is called the universal (A-)pseudo-
deformation ring of D, the pseudochamcter Dumlv R‘mﬂ [G] — R“nﬂ the universal (A-)pseudo-
deformation of D and the space X ‘”“" = Spec R“‘“V the universal (A—)pseudodeformation space

of D; we write R‘C‘;‘X’D if there is a need to indicate G, we often drop the index A if it is clear from

context.

The ring RR’%" behaves well under change of the coefficient ring A.

Proposition 4.7.6 (Cf. [Wil95, p. 457]). Let f: k — &' be a homomorphism between either two
finite or two local fields, and let f: A — A’ be a local homomorphisms of complete local Noetherian
commutative rings that reduces on residue fields to f. Define D =D ®x &' K'|G] — K'. Then
one has a natural isomorphism

Rlll’lll/ — Run1v® A/

Proof. The proof is as in [\\ i195, p. 457] for deformation rmgs If f is the identity, one can proceed
as follows. Any A € Aras can be regarded as a ring in Ara vie the action induced from I
the residue fields of A, A and A’ are the same. Then the assertion follows rapidly by using the
isomorphism Hom g (A, B) = Homa/ (A ®x A', B) for A € Ary and B € Ary, together with the
universal properties of RK‘}%, and RX%V.

In the general case, define for any B’ € Arx the ring B” as the subring of B’ of elements whose
reduction to x’ lies in the subfield k, so that B” € A\TA//. The argument just given applies to
A — A”. For A" — A’ note first that any D’ € PsD,, 1 (B’) takes values in B” because D’ takes
values in , so that D' defines a D" € PsD,, 5(B"). Conversely, if such a D" is given, we may
form D" ®p» A’ and compose it with the natural A’-homomorphism B” @4~ A’ — B’ to get back
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to D'. This yields the following chain of isomorphisms

Hom ( ‘;\f}%,, B') = PsD,, (B) = PsD,, 5(B")
~ i "\~ i /
= HomAu(RXr,l,l’%,B ) :HomAu(R‘X,‘,”%,B)
1 / /
>~ Homy (RS @ar A, B)
We deduce RW'Y, = RS @n A because any B’ € Arps can occur as test objects. O

The previous proposition justifies the following definition.

—5 univ

Definition 4.7.7. IfF is finite, we call R~ = RE%’ the universal mod p pseudodeformation ring
of D and we call Y%ﬁv = Xg%v the special fiber of the universal pseudodeformation space of D.

We shall also need to consider Cayley-Hamilton quotients. Recall from Remark 4.4.4 that DX’%’
induces a continuous pseudorepresentation (for which we shall use the same name)

univ , univ univ
DA,B : RA,ﬁ[[GH — RAﬁ.

Let the following be the diagram induced from (16)

CH CH-univ
i Pa.p -univ univ A, D aniv
Rxn% [G] ——— S/(\J% = (RQE[[GH)%I;?% — RA75' (24)

Definition 4.7.8. For ‘object’ the algebra SS%““W, the CH-representation pg%, or the pseudo-

character DS%‘“‘“’, respectively, we use the term universal Cayley-Hamilton object attached to D.
Remark 4.7.9. As explained in [Chel4, Prop. 1.23], the factorization in (24) has indeed a universal
property.

Definition 4.7.10 (Cf. [WE13, 3.1.5]). Suppose F is finite. Then we define condition ®5 to be

condition ® from Definition 3.2.2.

PDgyrale
We recall a criterion for RX%V and S/(\J%'““iv to be Noetherian.
Proposition 4.7.11 ([WEI1S, Props. 3.2 and 3.6]). The following hold if F is finite and ® holds:
(a) The topological A-algebra RX”%V lies in Ary.
(b) The CH-representation pg% is a continuous homomorphism.
(c) The ring S/C\J’Hﬁ'univ is module-finite as an RX‘%’-algebm, and therefore Noetherian.

(d) On Sg%“niv the profinite topology, the my-adic topology, and the quotient topology from the

surjection pg% are equivalent.

Remark 4.7.12. Suppose G = Gk for K a p-adic field. Then by Proposition 3.2.3 and Proposi-
tion 4.7.11, the ring R}‘\I%V is Noetherian.

Corollary 4.7.13. Suppose F is finite and @5 holds. Let A be a quotient of R := R‘;“;‘i(;) - Then
A is the ring of definition of Da = D%‘i" ®gr A over W(IF) in the sense of Definition 4.4.10.
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Proof. Let C' C A be the ring of definition of D4 over W(F), and let D¢ be the pseudocharacter
over C such that Do ®c A = D4. By the universality of R we have a unique W (F)-algebra
homomorphism R — C such that Do = D%“V ®grC. We deduce that the composition R — C' — A
is equal to the initially given quotient map. Hence C — A must be the identity. O

We shall also need the following result which in parts can be traced back to the the proof
of Proposition 4.7.11 in [WE13].

Proposition 4.7.14. IfIF is finite and condition ®5 is satisfied, then the following hold:

univ

(a) For any o: RS — Ain A\TA giving rise to the pseudocharacter D 4, the induced maps

(A[[G]] ®a A)%Ij — (RKH%’HGH © paniy A)%I;,I — (AHG]])%E - S/(\J%_univ ®R‘/‘\‘% A
are isomorphisms.
(b) The F-algebra (F[[G]])%H is finite-dimensional as an F-vector space.
Proof. For (a) consider the maps in
A[G @ A = RT(G]] @pesy A — A[[G]]. (25)

They are injective with dense image. By the definition of the Cayley-Hamilton ideal, this still
holds after passing to Cayley-Hamilton quotients. By [WE13, Cor. 1.2.2.9 and Prop. 3.2.2.1] the
A-algebra (A[[G’]])CDE is a finitely generated A-module and hence Noetherian. It follows that its
subrings (A[[G]] ©x A)FE C (RYN[[G]] @ punis A)FT are also finite A-modules. By completeness
) A,D
of A and their density in (A[[G]])$", the inclusions must be equalities. By Proposition 4.1.22(c),
we also know that the formation of the Cayley-Hamilton quotient commutes with base change.
Hence (R}l\n% [G]] ® Ry A)GHE — Sg%'“ni" D pgnss A is an isomorphism, and this completes the
proof of (a). Part (b) follows from [WE13, Thm. 1.3.3.2]; it is also a consequence of part (a) and
Proposition 4.7.11. O

The next result concerns the reducible locus for multiplicity free D.

Corollary 4.7.15. Suppose D is split and multiplicity free over F and equal to Dy @ Do. Then
the morphism 'p, D, X%nli"QX%nliv — X%ﬁv, (D1,Ds3) — Dy @ D5 is a closed immersion.

Proof. We need to show that the ring homomorphism
univ univ & univ
RF" — R51 ®]FR52

corresponding to v 3, is surjective. Since both sides are complete Noetherian local rings with
isomorphic residue field, it suffices to show the surjectivity for the induced map of the duals of
their tangent spaces; i.e., the injectivity of

’PSDﬁl (]F[E]) X PSDﬁz (IF[€]) — ,PSDﬁ(]F[&]), (Dl, DQ) — Dy & Ds. (26)

Consider n;-dimensional pseudodeformations D;, D; € PsDg (F[e]) for i = 1,2 such that D :=
Dy ® Dy = D} ® D). We need to show D; = D} for i = 1,2. /

Let A = F[e] and let S be the Cayley-Hamilton algebra A[G]/ CH(D). Observe that CH(D)
is contained in both, CH(D;) and CH(Dj): We explain this for D;. Recall s — xp p() =
XD,B(t, s)|t=s from Lemma 4.1.8(b). The equality D = D; @ D, implies

XD, Altr,otn] (D24 Siti) = XDy, At ] (D04 Siti) * XDo, Altr ] (225 Siti)s
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for n € N, s1,...,8, € S. The ideal CH(D;) is generated by the coefficients of all polynomials
XDi,Alt1,.stn] (D5 Siti). It follows from the displayed formula, that CH(D) is zero modulo CH(D;),
and this gives CH(D;) D CH(D). As a consequence we find that D; and D} factor via S.

By Theorem 4.3.10(b) the Cayley-Hamilton algebra is a GMA over A with D = det(g ¢) for
a datum of idempotents € = {e;,%;}j—1,..,. The proof in [Chel4, Thm. 2.22] shows that the
idempotents e; correspond bijectively to the irreducible summands of D, and so we write D =
EBJ-EEJ. in the notation of Lemma 4.3.8. Write J = {1,...,r} as a disjoint union J = J; U J such
that D; = Dje Jiﬁej, using that D is mulitplicity free.

Because S is a GMA, the algebra e;Se; is isomorphic to Mat,,; xn,(A) for some n; € N, and
where >, n; = n. It follows from Example 4.1.7 in particular that (D;); is n; f; j-dimensional

for some f; ; € No. Using (D;)e, mod (g) = (D;)e;, we find f; j = 1 for j € J; and f; ; = 0 for

J € J3 -

Let E; = Zje.h e;. Then by Lemma 4.3.8 we have dim((D;)g,) = dim(D;) and dim((D;)g,_,) =
0, and thus D; = (D;)g, = (D;)g, ® (D3—;) g, = Dg,. But the idempotent E; only depends on D;,
and so arguing in the same way for the D}, we find D, = Dg, = D, which concludes the proof. O

The locus of irreducible points shall be of special importance.

Definition 4.7.16. The irreducible locus of X%ﬁ" is defined as
(X%’iv)i" ={ze X%ﬁv : (D%‘iv)z is irreducible}

and its reducible locus (X%’iv)red as the topological space X%ﬁ" ~ (X%liv)i”. We overline the

—~~ univ

notation for the corresponding subsets of X &

The argument in [Chel4, Example 2.20] also proves.

univ

Proposition 4.7.17. The subsets (X%‘iv)i” C X%‘iv and (X5 )™ C Y%ﬂv are Zariski open.

By Proposition 4.7.11(c), we can associate to Sf%““i" a sheaf of coherent O yus
. A,

Sf%‘mi" under the finiteness condition ®5. The next result is not stated verbatim in [Chel4];

iv-algebras
D

however its proof is that of [Chel4, Cor. 2.23], with a continuity requirement added.

Proposition 4.7.18. Qver (XX“%’)i", the sheaf Sf%““i" is an Azumaya O xuniv-algebra of rank
) s A, D

n? equipped with its reduced norm.

Over affine open subsets of (X‘/‘\’%")i”7 Proposition 4.7.18 is a variant of Proposition 4.1.25 under
some continuity constraints.

4.8 Pseudodeformations over local fields

In this subsection we develop some results analogous to Subsection 3.3 for continuous pseudode-
formations of a fixed one D: k[G] — &, where & is a local field. Also, continuity is an important
theme; for instance to deduce under weak hypotheses from the continuity of a pseudocharacter
that of its associated representation.

Lemma 4.8.1. Let k be a local field with valuation ring O, and let D: K[G] — & be a continuous
n-dimensional pseudocharacter. Then the following hold:

(a) There exists Do € PsRE(O,) such that Do ®@o,, k = D.
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Let C C Oy, be the admissible profinite subring of O, from Lemma 4.4.8 and let Do € PsRE(C)
be such that Do ®c O = Do. Then furthermore:

(b) C is local, its residue field k(C) is finite, either C is a finite field, or k is a finite extension
of the fraction field of C, D := D¢ ®¢ k(C) is equal to D, for some z € |G(n)| and Do is
residually equal to D, in the sense of Definition 4.4.10.

Proof. Let ppg, xa1= be the representation from Theorem 4.1.18. For (a) observe first that the
characteristic polynomial coefficients Ap ; of xp(g, -) are continuous for 1 < ¢ < n, and hence the
sets Ap ;(G) are compact in k. Assume that for some g € G, Ap ;(g) does not lie in O. Then at
least one eigenvalue of ppg .a1s(g) has valuation different from 0, and, since we can pass to g~ *,
we may assume that this valuation is negative. Let A1,...,\, € &% denote the eigenvalues of
P&, o (g9) and index them so that A;,...,\; are precisely those with negative valuation. Then
for n > 0, the valuation of Ap ;(g™) is the valuation of (A1 -...-X;)™. The latter valuations are
unbounded. This contradicts the compactness of Ap ;j(G) and thus proves (a).

We now prove (b). By Lemma 4.4.8 the ring C is a finite product [[, C; of local admissible
profinite W (IF)-algebras C; and the residue field of each C; is finite. Let m be the maximal ideal
of O,. Then C'Nm is topologically nilpotent and C/(C N'm) is a finite field that surjects onto the
product of the residue fields of the C;. It follows that C' is local with finite residue field x(C).

It remains to show the assertion on the fraction field of C, since the last part of (b) follows from
Lemma 4.4.8. For this we may assume that C is infinite. Let &’ be the fraction field of C. Because
C is infinite and £(C) is finite, we f € C \ k(C), so that f has strictly positive valuation. Then
k' 2 k(C)((f)) is a non-trivially valued locally compact subfield of the locally compact field . It
now follows from [Wei67, 1.§2.Cor. 2 of Thm. 3, p. 6] that [s : '] is finite. O

The following result is a generalization of Corollary 4.4.6.

Corollary 4.8.2. Let k be a local field, let A be in Ar, and let D € PsRE(A) be continuous.
Define D as in Lemma 4.8.1, and assume that condition &5 holds. Then the following hold:

(a) If A=k then ppg, .z is continuous.

(b) If D is split and irreducible, then pp = p%H from Proposition 4.1.25 is a continuous repre-
sentation to Mat,, x,(A).

Proof. We first prove (a), and so here we assume A = k. Set A := O, and consider the diagram

cH
Pa

univ D_ qCH-univ J9®¢  oCH-univ , d®!  oCH-univ Ll
RUBICT —— Sy 5™ ——= S0 5" Orpy O —— S 5" O 175,
where ¢: RK’%" — O is the map induced from the universal property of er%ﬂ and where

t: O, — k™8 is the natural inclusion. The first map is continuous by Proposition 4.7.11(b),
the second by Proposition 4.7.11(d), which says that Sg%'univ carries the my-adic topology, By

Proposition 4.7.11(d), the ring Sﬁ%‘miv ® paniv Oy, 1s finitely generated as an O,-module, and hence
, A, D )
the mp-topology also coincides with the topology inherited from Sf%“mv ® paniv K € Ar,; it follows
) A,D
that also the last map is continuous and that STE""Y @ puniv £'8 has finite £*'¢-dimension. But
’ A,D
the also the map

ST & sy 58 —om (5[ G G —— w¥[[G])/ eer (D)
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is continuous. Hence in the factorization of D: k[G] — k™8 via k*8[[G]]/ ker (D) given in Propo-
sition 4.1.16, the first map is continuous. From Theorem 4.1.17 we know that x*8[[G]]/ ker (D) is
semisimple and finite-dimensional over x2¢ and that its determinants are given by determinants of
the simple matrix algebra factors of k*8[[G]]/ker (D). Hence the second map in the factorization
given in Proposition 4.1.16 is continuous, and thus so is the composition p.

The proof of (b) is analogous. One has to replace k by A in most places and one substitute
Theorem 4.1.17 by Theorem 4.3.10. O

Remark 4.8.3. In an abstract setting, ®5 in Corollary 4.8.2 seems hard to check. In our concrete
applications we know D because of Proposition 3.2.3, so then the formulation is useful. A more
natural condition to require would be @ p; we do suspect that this condition also suffices. Also, we
wonder if the conclusion of Corollary 4.8.2 might hold without assuming ®5, and without invoking
Lemma 4.8.1; just because A € Ar,.

Corollary 4.8.4. Let r be a local field, and let D € PsRE (k) be continuous. Define D as in
Lemma 4.8.1, and assume that condition ®5 holds. Then there exists a finite extension k' of k
and split irreducible continuous D; € PsRE (K'), i =1,...,7 such that

D&,k =D ®...® D, (27)
Moreover D € PsRE(Oy) and D; € PsRE(Oy/) fori=1,...,r

Proof. By Theorem 4.1.17 the s-algebra S := k[[G]]/ ker (D ®p,, k) has finite xk-dimension. Hence
Lemma A.2.3 allows us to find a finite extension ' of k such that S ®, '/ Rad(S ®, ') is a
product of matrix rings over x’. It follows that &'[[G]]/ker (D ®p, ') is a product of matrix
algebras over x’. Hence we have D ®, k' = ®]_, D; for split irreducible D; € PsR (k). We find
that (BI_,pp,) @ K21& PD®o, roie- Since the latter is continuous by Corollary 4.8.2, so are the
pp,. Finally Lemma 4.8.1 shows that the D; can be defined over O, and D over O,. O

To prove a more general result than Corollary 4.8.4, we need some preparations.

Lemma 4.8.5. Let F be a finite field, let A € Arg be a domain, and let p € Spec A be a prime of
dimension 1, and consider the completion A\p as a topological ring in ./zl\rn(p), Then the canonical
map t: A — ﬁp is continuous and injective, and A — 1(A) is a homeomorphism if (A) is equipped
with the subspace topology.

Proof. The injectivity of ¢ is clear, since A — A, is injective, as A is a domain, and completion is
injective, since A, is Noetherian.

Recall that A carries the m A adic topology and that the topology on A is the weakest topology
such that the canonical maps Ap — R, = A,/p"A, = Ap/p”AIJ are continuous for all n, with R,
carrying the unique topology as a ﬁnlte dimensional vector space with a continuous action of the
local field k(p). Let ¢t,: A — Ep — R, be the canonical map. Because A and gp are topological
modules, it remains to prove continuity near 0, i.e., we have to show the following two assertions:
(i) For n € N and U C R,, an open neighborhood of 0, there exists m € N such that ¢, (m’y) C U.
(ii) For m € N there exists n € N and U C R,, open, such that m} D ¢ }(U).

Before we tackle (i) and (ii), we show the following assertion (iii): There exists w € my4 with
non-zero image in A/p such that for each n > 1 there exists a coefficient field K,, for R,, such that
K, D F[[tn(w)]] — we also gather further properties of F[[¢,, (w)]]; recall that being a coefficient field
means that K,, C R, is a subfield that under the reduction map R,, — x(p) maps onto k(p).

o7



4. Pseudodeformations over local fields

For the proof of (iii), let O be the ring of integers of the local field K7 = x(p). The ring O is also
the integral closure of A/p = ¢1(A) in k(p). By [Wei67, 1.§4.Prop. 6, p. 22], for any w € my with
t1(a) # 0 the ring O is finite over Fp[[s1(w)]], and hence a finite free Fp[[1(w)]]-module. Because
A/p and O have the same quotient field, the field A/p is also a full F,[[¢1 (w)]]-sublattice of x(p)
and it follows that there exists j > 0 such that A/p D ¢;(w)?O. Thus for a uniformizer t € O,
all sufficiently large powers of ¢ lie in A/p. We now choose (a new!) w € A such that ¢;(w) = t°
for some e > 0 coprime to p. One easily verifies that ¢1(w) is a p-basis of k(p). It follows from
[Hocl4, Thm. 12], that K, := () RY [tn(w)] is a coefficient field for R,,. Because K, is complete,
it contains F[[t, (w)]]. Let O,, be the ring of integers of K,,. Then O, is finite free over F[[¢,, (w)]]-
Also, A/p C K; is finite free over F[[t1(w)]], and A/p[1/t1(w)] = K(p)..

We now prove (i). Let p™ = ¢-1(0) D p™. Then A/p" — A/p(™ A is surjective, and the
induced map A/p(™ A — R, is injective. Because the A/p-modules p’/p*t! are finitely generated
over A/p and thus over F[[11(w)]], as a module over F[[t,(w)]] the ring A/p(™ A is finite free.
Moreover it is an F[[, (w)]]-lattice in the F((c,(w)))-vector space (A/p™ A)[1/i,(w)] € R,. By
induction on n one also sees that (A/p(™ A)[1/t,(w)] = R,: This is clearly true for n = 1 by the
previous paragraph. In the induction step, we know that under reduction (A/p™ A)[1/1, (w)] maps
onto R,_1. Moreover p"~1/p"[1/1,(w)] is a k(p) = A/p[1/t1(w)]-vector space, and it follows that
(A/p™ A)[1/1,(w)] is a k(p)-vector space and thus equal to R,,. Now the topology of R,, as a K,, or
as a F((¢1(w)))-vector space is the same, and it follows that ¢,,(A) is a compact open neighborhood
of 0 in R,, and hence there exists j > 0 such that ¢,((w)?4) C U, and also t,(A)/t,(w?A) is
finite. Tt follows that A/(p(™ + w7 A) is a local Artin ring, and so there exists m > 0 such that
m} C p™ + WA, and also «(m") C U. This proves (i).

For (ii) we show first that there exists n € N such that m’y O p(™: To see this, note that
the ring maps A — A, — Ap are injective and the p-adic topology on Ap is separated, i.e., we
have N, p (") = 0. The existence of n now follows from Chevalley’s Lemma, [Che43, Lem. 7], Wthh
asserts that the topology on A generated by the ideals (P("))nzo is finer then the m4-adic topology.

Now by the choice of w we have wA C my. Therefore w™A + p(") C m’y. It follows that
U = 1, (w™A) is an open neighborhood of 0 such that ¢! (t,(A) NU) C my. O
Proposition 4.8.6. Suppose ®5 holds. Let Rlz)mv
be the corresponding pseudodeformation. Suppose A is a domain with fraction field K and that
Dg := D ®4 K is multiplicity free. Then there exist

— A be a morphism in le\r]F and let Dy

(i) a finite extension K' of K with integral closure A’ of A in K/, and
(ii) continuous irreducible pseudocharacters D}: A'|G] — A/,
such that Da @4 A’ = ®;D,. The ring A’ lies in Arg: for some finite field /' > F. If D is split,
the ring of definition A; C A" of each D} lies in Admp and one has D = &;(D} ®4, k(A;)) over F.
Proof. Define the rings
SA = Sf%univ ®RRI,‘% A and S]K = SA ®A K.

Then by Proposition 4.7.11, the A-algebra S 4 is finitely generated as an A-module, and the induced
homomorphism G — S is continuous if S is equipped with the m 4-adic topology as an A-module.
In particular the K-algebra Sk is of finite K-dimension.

Now Lemma A.2.3 gives a finite extension K’ of K so that S’ := Sx ®k K’/ Rad(Sx @k K')
is a product of matrix algebras S’ = [[, Mat,, xn,(K’). Since Dx/ := Dx ®x K’ factors via S’
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4 PSEUDOCHARACTERS AND THEIR DEFORMATIONS

and is multiplicity free, it is the composition of G — S} — (S)* with [], det,, where det,, is
the determinant of Maty,, xn, (K’). Write Dxs = @, D; with D; corresponding to det,,, on the i-th
factor of S’.

Let A’ be the integral closure of A in K'. Because A is Nagata by Lemma A.1.1(a), the ring A’
is finite over A and hence lies in Admy. Because A is complete Noetherian, so is A’, and because
A’ must be semilocal, it is a product of local rings. But A’ is also a subring of the field K’, and
thus A’ lies in ./21\7”]1:‘/ for some finite field extension F' D F. Let Sa := S4 ®4 A’ and write (S4)’
for the image of S4/ in S'.

Because Dg: = @, D;, the attached characteristic polynomials satisfy

HXD;(',t) = Xp, (- t) € K'[t].

By hypothesis, the coefficients of Dg: lie in A € A’ C K'. Now because A’ is integrally closed,
by [Mat89, Thm. 9.2] the coefficients of the xp:(-,t) lie in A’. Hence by Amitsur’s formula in the
form Proposition 4.1.10, the D} take values in A’.

Now note that the proposition is trivial if A has Krull dimension 0, and so we assume it to be
strictly positive from now on, so that Spec A’ \ {my} is a non-empty Jacobson scheme and thus
its dimension 1 of Spec A" points are very dense in it; see Definition A.1.10 and Proposition A.1.11.
Moreover the locus of irreducibility of each D; is open in Spec A’ by Proposition 4.7.17 and contains
the generic point of Spec A’ by construction. Also by Lemma A.1.1 the complete Noetherian local
ring A’ is a Nagata ring and so the regular locus is open in Spec A’; it is non-empty because
A’ is a domain. Hence there exists a point p € Spec A’ of dimension 1 at which all D; are
simultaneously irreducible, and such that A;J is regular local. The former condition on p implies
by Proposition 4.7.18 that each D; when considered as a pseudocharacter Ay[G] — Aj, is equal
to the reduced norm composed with a representation G — (C;)* for C; an A;J—Azumaya algebra.
The latter condition implies that one has an inclusion of Brauer groups Br(4j}) < Br(K') by
[AG60, Thm. 7.2], and hence that all C; have trivial Brauer class by the choice of K, i.e. C; &
Mat,,, xn, (Ap) for suitable n; > 0. It follows that over A, we have that D’ is the determinant of a
direct sum of representations

G — [ Matn, sn, (A7)

By our hypothesis G — S is continuous as is the induced pseudocharacter D: Sy — A. Let
Sp be S4 ®a EP/CH(D’). Then by Lemma 4.8.5 also G — S, is continuous, as is the induced
pseudocharacter S, — A’. From the above and Proposition 4.3.9 it follows that S, is a GMA
with trivial ideal of total reducibility. Now the continuity of G — Sy implies that of D;: G —
Maty,; xn,; (ﬁ\’p)>< det j‘l\’p obtained by applying the i-the projection and the determinant, and again
from Lemma 4.8.5 we deduce that D;: A'[G] — A’ is continuous.

It remains to prove the last assertion, assuming that D is split: Let 4; C A’ be the ring of
definition of D!, denote by D;: A;[G] — A; the corresponding pseudocharacter and let D; :=
D; ®4, k(A;). Note that the x(A;) are the rings of definition of D;. Let F” be the smallest
extension of F” that contains all k(A;). Then D ®@r F” = @, D; ®,(a,) F”. However D is split over
F and so all D; are defined over F, and this shows k(A;) = F for all i by Lemma 4.4.8. We deduce
A; € Admy . O

Corollary 4.8.7. Let k be a finite or a local field, and let p: G — GL, (k) be a continuous
absolutely irreducible homomorphism with associated pseudocharacter D. Suppose that ®5 holds
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for D attached to D as in Lemma 4.8.1. Then the natural map R}‘\?:)V — R}l\fliD" induced from
pa— D,, for Ac Ar is an isomorphism.

Proof. If k is finite, the assertion is [Chel4, Exmp. 3.4]. For local k, we need to show that the
natural transformation of functors Ar, — Sets defined by

{continuous deformations p4 of p to A}

A< ipA'_)DPA

{continuous pseudodeformations D4 of D to A}

is an isomorphism. Well-definedness is clear. Injectivity follows from Theorem 4.3.10(a) since pp
is absolutely irreducible. To prove surjectivity, consider a pseudodeformation D4: A[G] — A of
D and note that by Theorem 4.3.10(a) there exists a deformation pa of pp to A with Dy =D, .
The continuity of p4 follows from Corollary 4.8.2(b). O

We now give an analog of Theorem 3.3.1 for pseudocharacters.

Corollary 4.8.8. Let F be finite and let D € PsRA(F) be continuous. For x € X}‘\I%V such
that k(x) is a local field and with residue map 7 : RK‘%" — k(z) and associated pseudocharacter
D, : k(x)[G] — k(x), define the morphism f, = m, ®id: Rxn% ®a k() = k(x), and the completion
R of Rxn% ®a k(x) at p = Ker(f;). Denote by

(i) D:G— RX“%’ — R the completion at p of the pseudocharacter D%“V ®a k(x), and by

(i) D%’fv: G — RE?;‘S’DI the universal pseudodeformation from Proposition 4.7.4 attached to D,.

Then the map ¢: R‘fj‘f" — R induced from the universal property of R‘}D‘f" s an isomorphism.

Proof. We adapt the proof of Theorem 3.3.1. Thus we need to show that ¢ is formally étale. We
abbreviate k = k(x) and let O be the ring of integers of k. Consider the commutative diagram

D
x univ
G Ry = A
-
. aa  ~
-

. ) ~ _ Gayr

univ
RB QA K R AT K,

where A € Ar,, the ideal I C A satisfies I> = 0, and D: A[G] — A is continuous pseudodefor-
mation of D,. The maps & 4,5 and a4 are homomorphisms in .Zl;,@. We will construct the dashed
arrow (4 so that the extended diagram commutes and show its uniqueness. Our first claim is that
there is an O-algebra Ag C A that as an O-module is an O-lattice in A, and such that D is valued
in Ao.

The proof is an induction over j for the composition D; = D (mod mi‘) of D with the quotient
map A — A; = A/w/,. For j = 1 the claim holds because D, = D; is valued in O C k.
Suppose in the induction step that we have defined A;¢ C A; as in the claim and we wish to
construct Aj110 C Aj1. Because the characteristic polynomial coefficients A; p,,,, i =1,...,n,
are continuous and G is profinite and hence compact, the joint image of the A; p,,, (G) is bounded
in Aj41 and hence there exists an O-sublattice L C A;; that contains this joint image as well as
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O -1, and such that L (mod mil) = Ajo. Now using that A, is a ring and that qu is annihilated
by my, it follows, for instance by considering a suitable O-basis of L and the quotient L + mil /L
inside m’, /(m/t" + L nm/)), that L - L is an O-algebra that can be taken as A; 1 .

Let C; be the ring of definition of D,. It is a quotient of R“‘“ﬁ" and a subring of O C k. We
let B be the subalgebra of AO that is the inverse image of C, under the reduction map Ag — O
modulo my. Then B € Ary and B is a coefficient ring for D. Denote by Dg: B[G] — B
the pseudocharacter such that Dgp ® g A = D. If k has positive characteristic, it follows from
Lemma 4.8.5 that Dp is continuous with B carrying the mp-adic topology. The same holds if
is a p-dic field: Then B is a finite free Z,-module, and so the p-adic topology on B agrees with
the mp-adic topology on B. Therefore the continuity of D with respect to the topology on A as a
continuous xk-module implies the continuity of Dp for the mpg-adic topology on B.

Now the universal property of R‘;\r"% yields a unique homomorphism Sg: RK’%" — B such that
D = g oDpg. Then fg ®, id, is a homomorphism R/”\i%’ ®p k — A. Its composition with A — &k
has kernel p, and thus it induces a map (RX“%’ ®a k)p — A. If m denotes the length of A, then p™

maps to zero under that map, so that it factors via R — A. This is the wanted map &4: The top
triangle in the diagram commutes by construction, the bottom triangle because 54 (mod I) and
the map Run“’ — B/(INB) C A/I must agree since they both give rise to D (mod I).

Let us show the uniqueness of &4, and so let &/y be a second map R — A that makes as
a dashed arrow the diagram commute. Observe that by construction we have the equality of
pseudocharacters ¢ o DBTV =()o (D%‘iV ®a k). Now composing the equality with either &4 or
o'y gives the same pseudocharacter. We claim that d4 o (/j =ayo0 (/3 as maps RX%" ®p Kk — A.
If the claim is shown, then uniqueness follows, because the induced diagonal map is reconstructed
by localization and completion — the ideal p™ is mapped to zero in A.

To prove the latter claim, by the universal property of the tensor product of rings, it suffices
to understand the ring maps on both factors of R““iV ®p k — A separately. On the second factor,
both maps are the scalar multiplication 1somorphlsm Kk — k-1l,aa — «a-1, by the deﬁmtlon of
() and the condition that the diagonal map be in Ar,.. The restriction of either map Gy o () or
o'y ( ) to the first factor R“n“’ gives when composed with D‘lnlv ®a K the pseudocharacter D. Both
restrictions to R“m" are bubJect to the universal property of this ring, and hence these restrictions
agree, and the clalm is shown. O

Remark 4.8.9. We think that [Chel4, Cor. 2.23](ii) has to be formulated in a way similar to
Corollary 4.8.8; only if x(x) is a p-adic field, one can simply complete (R“n“’)pm to obtain a universal
pseudodeformation ring for D,.. In Corollary 4.8.8 we have only verified this for dimension 1 points.

Corollary 4.8.10. Let x be a local field and let D € PsRE(k) be continuous. Suppose that
condition 5, for D from Lemma 4.8.1, is satisfied. Then the following hold:

(a) The ring R™Y is Noetherian.

(b) Suppose that D is irreducible and that H*(G,ad,) = 0 for p := ppg, wue. Then RN is
formally smooth over k of relative dimension dim,ac H'(G, ad,).

Proof. Let C be the ring of definition of D, let D¢ : C[G] — C' the the continuous pseudocharacter
from Lemma 4.8.1 such that Do ®@c £ = D, and let D := D¢ ®¢ k(C); note that (C) is
finite; note also that continuity is clear because C' carries the subspace topology of x and we
only require the continuity of the characteristic polynomial coefficients as functions G — C. By
Proposition 4.7.4 and our hypotheses, the ring R%lzv N is Noetherian. Part (a) follows by
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4. Pseudodeformations over local fields

choosing z € X ‘;(1/“(:; ) D 2 the point corresponding to D, and by applying Corollary 4.8.8 with

this x; note that R (in Corollary 4.8.8) is Noetherian as the completion of a Noetherian local ring.
To see part (b), let ¥ D k be a finite extension over which D is split. Let p := ppg, .« : G —

GL, (k") be the continuous and absolutely irreducible representation with D, . = D ®, &’. Our
hypotheses gives H?(G,ad,/) = 0 and it will suffice to show that R} is formally smooth over x’
of dimension dim,. H'(G,ad,/). This follows from Corollary 4.8.7 and Theorem 3.2.4 (e). O

For later use we also need variants of Corollary 4.8.7 and Corollary 4.8.8 for deformations of pairs
of representations and pseudocharacters. Let D1, Dy: F[G] — F be continuous pseudocharacters
of dimensions ny and ns, such that (I)E holds for ¢ = 1,2. Consider the functor

PsDp, b,): Ary — Sets, A {(D1,Dy) | D;: G —> A is a pseudodeformation of D }.

It is straightforw;'ird to see that ’PsD(51 D) 18 represented by Rt‘j\l%l By T R‘;\’%’l ®RX%V2 and
that the ring Rl(llr\l%l D) is Noetherian, using Proposition 4.7.4 and Proposition 4.7.11.
univ . univ . : . . T :
Let z € X (s D) = Spec R (Dr.D») be a point of dimension 1 such that D, , is irreducible for

i = 1,2 for the corresponding pair (Dj 4, D2 ;). As above one can define a deformation functor for
this pair an Ar,(,). It is representable by 2?;\5,(D1,I,D2,1) = R‘;?;V)’Dlaz@A@,{(m)Rzrgg’D“, which is

again complete local Noetherian. Let m: R, := RK“(%l By) ®p k(z) = k(z) be the homomorphism

induced from z, and let

@1 R (DyaDsy) = Ba

be the natural homomorphism constructed as in Corollary 4.8.8, where Ez denotes the completion
of R, at p, := Kerm.

Let finally L be a finite extension of k(z) over which there exist absolutely irreducible repre-
sentations p;: G — GLy, (L) such that D,, = D; ; ®y(,) L for i = 1,2. Define the functor

Dy ,po): Ara — Sets, A {(p1,4,p2,4) | pia: G — GL,(A) : pis a deformation of p;},

Since the p; are absolutely irreducible, it is represented by ‘in(‘;l pa) = R‘in;‘i ® LRE?;‘;, and the

latter ring is Noetherian local by Proposition 3.2.3 and Theorem 3.2.4 since we assume @5 , i = 1, 2.
As in Corollary 4.8.7 one has a natural homomorphism

1/}: szj(lzl,pz) - RE?;\)IV(DI,I7D2,T) ®”(I) L.

Proposition 4.8.11. The following hold:

(a) The maps ¥ and ¢ are isomorphisms.
(b) Suppose G = Gk and H°(G,ad,,) = 0 for i = 1,2. Then Rf"(i;hm)’red is formally smooth

over L of dimension d(n? + n3) + 2 and hence x is a smooth point on XE%?,EQ),red with

tangent space dimension d(n} + n3) + 1.

Proof. The two assertions in (a) are proved exactly as Corollary 4.8.7 and Corollary 4.8.8, and
we omit the details. The first assertion in (b) follows from our description of sz‘(izl pa) e
completed tensor product and from Corollary 3.4.3. The second assertion now is a consequence of

(a), of Proposition 4.7.6 and of Lemma 3.3.5. O

4 as a
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5 Equidimensionality and density of the regular locus

This section proves the main result of this work, the equidimensionality of the special fiber of uni-
versal pseudodeformation rings of expected dimension. The proof follows the steps of Chenevier’s
proof of the equidimensionality of the generic fiber of the universal pseudocharacter space from
[Chell]. The main contribution is to overcome the complications that arise in the special fiber.

There are certain points in the special fiber that have no counterpart in the generic fiber. We
call them special points and describe them in Subsection 5.1; see Definition 5.1.2. Non-special
(irreducible) points will take the role of irreducible points in Chenevier’s work. Subsection 5.1 also
contains some technical result, Lemma 5.1.6, on the comparison of universal pseudodeformation
and universal deformation rings over local fields where the residual pseudocharacter is a sum of
two irreducible ones.

In Subsection 5.2 we prove the inductive Theorem 5.2.1 to obtain our main result. If the non-
special irreducible points are Zariski open dense in universal pseudodeformation spaces for D of
dimension less than n, then irreducible points are Zariski dense for D of dimension n. Subsection 5.3
gives an alternative proof of Theorem 5.2.1 following a suggestion of the referee. The main point of
Subsection 5.4 is to show in Theorem 5.4.1 that the non-special irreducible points are dense open
in the irreducible points. This uses induction of pseudocharacters from Subsection 4.6 as a main
tool, and the proof in dimension n relies on results for dimension n’ < n.

Then in Subsection 5.5 we complete the proof of our main theorem Theorem 5.5.1 in a straight-
" when ¢, ¢ K. This

allows us in Theorem 5.5.7 to establish Serre’s condition (Rsz) for E%‘iv except for one single D.

forward manner. In Theorem 5.5.5 we determine the singular locus of Rp :

In this section, we use the notation K D Q,, d, Gk, (p, D: Gx — F (continuous) with F finite,
as before. Often we write n for dim D. To emphasize K in universal objects, we sometimes write
=5 univ

Ry p for R‘C‘;‘i"wﬁ and Y}n% for Spec R}?%. All results of this section only concern the special

fiber of pseudodeformation spaces.

5.1 Special points

Let Xcyc: Gk — Z, denote the p-adic cyclotomic character. Let A be in VZTW(F) (or a localization
of such a ring), let p: Gk — GL,(A) be a continuous representation and D: Gx — A be a
continuous pseudocharacter. For ¢ € Z, we shall denote by p(i) and D(i) the twist by xiy. of p
and D, respectively. An elementary but crucial observation in [Chell] was that H*(Gg,ad,) =0
whenever a p: Gxg — GL,(E) is a continuous absolutely irreducible representation into a p-adic
field E; this follows from local Tate duality in the form given in Theorem 3.4.1, which gives

HQ(GK’adp)v = HomGK(p,p(l)), (28)

together with the fact that ycyc has infinite order. For representations into local (or finite) fields of
characteristic p the order of xcyc (mod p) is finite, and so the situation has to be further analyzed.

Lemma 5.1.1. Let E be a finite or local field of characteristic p and let p: Gx — GL,(E) be a
continuous absolutely irreducible representation. Then the following hold:
Suppose that (, ¢ K (Case I). Then the following assertions are equivalent:

(i) H*(Gk,ad,) is non-zero.

(ii) The G -representations p and p(1) are isomorphic.
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(iii) The exists a finite separable extension E' of E such that p@p E’ is induced from a continuous
representation T of Gk over E' for K' = K((,).

Suppose that ¢, € K (Case II). Then the map H?*(Tr): H*(Gk,ad,) = H*(Gg,E) = E is
surjective, and the following assertions are equivalent:

(i’) Hz(GK,adg) is mon-zero.
(ii’) H(Gk,ad,) is non-zero.

(i42’) The exists a finite extension E' of E and a Galois extension K' of K of degree p such that
p®p E' is induced from a continuous representation T over E' of Gg.

(iv’) The restriction p @ E™8|q,, is reducible for some Galois extension K' of K of degree p.

In both cases, if T exists, then it is absolutely irreducible, and in particular Endg ., (1) = E.

Proof. The equivalence of (i) and (ii) follows from (28) and the absolute irreducibility of p. The
duality in Theorem 3.4.1 also yields the equivalence of (i’) and (ii’), in a similar way. In all cases,
the continuity and absolute irreducibility of 7, if it exists, is implied by Lemma 2.1.4(b) and (f).
The equivalence of (ii) and (iii) now follows from Theorem 2.2.1. The equivalence of (iii’) and
(iv’) is a consequence of Lemma 2.3.1. The implication (ii")=-(iii’) follows from Lemma 2.3.2(g)
and (j), and the implication (iii’)=-(ii’) is shown in Example 4.6.4. O

—~~ univ

Definition 5.1.2. We call x € (X Kﬁ)irr special if one of the following two conditions holds

(i) ¢ ¢ K and D, = D,(1),

(ii) ¢p € K and Dq|q,., is reducible for some degree p Galois extension K' of K;
otherwise x is called non-special. We write (YE%)SPC] for {z € (Y}?’%)i” | is special} and
(Rt for (R 30y (K sy
Lemma 5.1.3. The set (YHKI%)SPCI is closed in (Y}J{n%)i”.
Proof. If ¢, ¢ K, then the condition D = D(1) is a closed condition in Y?(n% by Corollary 4.5.11,
and this concludes the argument.

If , € K, then note first that the set of Galois extensions K’ of K of degree p is finite. Since
by class field theory (G22)/(G32)*? is finite if K is a p-adic field. By [Chel4, 2.20] the reducibility
of a pseudocharacter over a field can be detected by the vanishing of certain determinants whose
entries are traces of the pseudocharacter, evaluated at certain elements of the group in question.

—~~ univ

If n = dim D, then 2 € (X 1) if and only if for some degree p Galois extensions K’ over K
and all n? tuples (g;) € G, one has

det (AD,1<gigj)i,j:1,...,n2) = 0.

Hence (Y}?’%)Spd is Zariski closed in (Y;n,%)i” as a finite union (over K') of closed subsets. [

—~~ univ

For X € X5 locally closed, we set X := X ~ {mzuiv }. The following holds:
‘D

—~- univ

Facts 5.1.4.  (a) mpguiv is the unique closed point of X5
‘D

— univ

(b) Fori > 1, the dimension i points on%liv are the dimension i — 1 points of X I
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(c) IfX 18 non-empty, then the dimension 0 points ofX are very dense in X ; see Lemma A.1.8.

We call x € Y%ﬂv regular, if R%l " is regular at x, and singular otherwise.

—~ univ

Notation 5.1.5. Let X be a locally closed subset of X 5

(a) We use the superscripts irr, red, reg, sing on X to denote the subset of irreducible, reducible,
reqular and singular points, respectively; cf. Definition 4.7.16.

(b) We write Xyea (subscript!) for X with its induced reduced subscheme structure.

(c) For attributes a,b,c of X, if they apply, we write X*° for X* N XY, XP for XN Xy, Xap
for X, N X, ete.

—- univ

The remaining results in this section concern dimension 1 points on X5

7 univ)

Lemma 5.1.6. Let x be a closed point of U := (X I ), let D', be the pseudocharacter k(z)[G] —
k(z), 9 = 1 @wmw) D(g) and let R be the universal pseudodeformation ring for D}, from Corol-
lary 4.8.8. Then the following hold:

(a) Suppose that (, ¢ K and that x is non-special. Then R is reqular of dimension dn® + 1. If
in addition UPP°! is non-empty, it is reqular and equidimensional of dimension dn?.

(b) Suppose that ¢, ¢ K and that z is special. Then Risa complete intersection ring with
dim R € {dn? + 1,dn? + 2}. Moreover, U is of dimension at most dn® + 1.

(c) Suppose that ¢, € K and that = is non-special. Then ﬁrcd is reqular of dimension dn?® + 1.
If in addition Ulf;';pd is non-empty, it is reqular and equidimensional of dimension dn?.

Proof. Consider the Galois representation p,: Gx — GL, (L) with D, = D!, from Theorem 4.3.10
that is defined over a finite extension L of k(z). For (a) note that we have H?*(Gk,ad,,) =
0 by Lemma 5.1.1, Case I, and the definition of special. The Euler characteristic formula of
Theorem 3.4.1 now yields

dim R = dimy, H' (G, ad,.) = dn® + dim;, H(Gk,ad,,) = dn® + 1.

It follows from Lemma 3.3.5 and Remark 3.3.2 that z is a regular point of Y%ﬂv of dimension
dn? +1 —1 = dn?. Since z lies on U, it is also a regular point of U. To see that U is regular, let
Y C U be the closed subscheme of singular points. We know that points of dimension at most 1
will be dense in the constructible set Y. Since the unique closed point of Y%l " is not in U, points
of dimension 1 are dense in Y C U. However as we just saw, such points are regular and cannot
lie in Y. Therefore Y must be empty. And again by the density of dimension 1 points in U, it
follows that U is regular and equidimensional of dimension dn?, proving (a).

For (b), we observe H?(Gk,ad,,)" = H°(Gk,ad,, (1)) = Homg, (pz, p»(1)) = L using Theo-
rem 3.4.1, and in the last step that p, = p,(1) and that p, is absolutely irreducible. This time,
the Euler characteristic formula provides a presentation

0—TI—= k(z)[X1,..., Xan212] —>]§p — 0,

where the ideal T is generated by at most one element over k(x)[X7, ..., Xg,212]. This proves the
claims on ﬁp. The remaining assertion follows from the density of dimension 1 points in U and
Lemma 3.3.5. _

For (c), it follows from the non-specialness of D, and from Corollary 3.4.3 that (E;:W)red
is regular local of dimension dn? + 1. From Proposition 4.7.6 and Corollary 4.8.7 we deduce
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E‘;,fv Rp(e) L = E;:iv, and the assertion on ﬁfed follows. The remaining assertion follows from
the density of dimension 1 points in U and Lemma 3.3.5. O

We also need a similar result in certain reducible cases. It is adapted from [Chell, Lem. 2.2].

Lemma 5.1.7. Fori = 1,2, let D;: Gx — F be pseudocharacters over a finite field F, let x; €
Y%niw be irreducible non-special dimension 1 points, and let L be a finite extension of both k(x;) over
which there exist absolutely irreducible representations p;: Gx — GLy, (L) with D), = Dy, @y (z) L.
Let p: G — GL, (L) be a nontrivial extension of ps by p1. Assume that D,, # D,,(m) for any
m € {1,...,p—1}. Then the following hold:

(a) The representation p exists; it satisfies L = Endg, (p); one has D, = D,, & D,, as pseu-
docharacters into L; the functor D,: Ary — Sets is pro-representable.

We write R},}ni" for the representing universal ring of D, and pgni": Gg — GLn(R};niV) for a
universal deformation and X;)miv for Spec R‘;ni". Denote by R the universal pseudodeformation
ring for D, to Arp, by ¢: X;™ — X := Spec R the map of L-schemes induced by sending pp™"
to its associated pseudocharacter ngniv, and by dy: tXIljmiv’p =tz the induced L-linear map on

tangent spaces.

(b) Suppose that p’ € kerdy C txuniv , & D,(Le]), i.e., that D, = D,. Then with respect to a
suitable basis p' is upper triangular and is the trivial deformations on the diagonal blocks.

(c) If (, ¢ K, then Rgni" is formally smooth over L of dimension dimp txwuv , = dn? + 1,
dimg kerdp = dnins —1 and dimgimdy = dn? — dning + 2.

(d) If {, € K, then RE,’}& is formally smooth over L of relative dimension h — 1 for h =
dimy, tX;mV’p = dn? + 2. Denoting by Qreq: (X;,miv)red — ()?)red the morphism on reduced
L-schemes associated to ¢ and by d Yreq : t(X;)lniv)red’p — t()?)
spaces, there furthermore exists § € {0,1} such that

. the induced map on tangent

red;

dimp kerdppeq = dning —1—6 and dimpimdppeq = dn? — dnins + 2 + 6.
Proof. We begin with (a). The Euler characteristic formula in Theorem 3.4.1 now gives

dimp, EXtéK (p$2 ) Pml) =dimpg, HI(GK’ Pz & p:g)
= dnan + dlmL HO(GK7 Py & pa\v/g) + dlmL HQ(GKa Pz b p;?/g)7
which is strictly positive. Thus there exists an nonzero element ¢ € Extgk (Pzss Py ). Setting
p= ( Py € ) and applying Lemma 3.4.4 and Theorem 3.2.4 completes the proof of (a). We

0 pa,
observe for later, that in fact our assumptions imply that

dimy H*(Gk, pz, ® py,) = dimp H (G, pyl, © pa,(1)) = dimg Homg, (pa, , pa, (1)) =0,

and H(G g, po, @ py,) = Home, (P, pz,) = 0, so that dimy, Extgk (Pisy Pzy) = dnina.
For the proof of (b), we use the canonical identifications (see [Maz97, Prop., p. 271])

20, (29)

to identify kerdy with the L-subspace of D,(L[e]), which consists of the deformations of p to

1

D,(L[e]) = txumiv, and PsDp,(L[)) =t

Le] that map under d ¢ to the trivial pseudodeformation to Le] of the residual pseudocharacter
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5 EQUIDIMENSIONALITY AND DENSITY OF THE REGULAR LOCUS

D, associated with p. Let p’ be a deformation of p whose associated pseudocharacter satisfies
D, = D,. The linearization of p’ gives a continuous homomorphism

L[EHGK] . ( Matn1><n1 (L[&‘]) Matnlxng(/lm) >’

Matng XMnq (A21) Matnzxnz (L[E])

which when composed with the determinant gives D,/ so that by Theorem 4.3.10(b) p’ factors via
a GMA. By hypothesis we must have A5 = L[e] and Ay C eL. Also by hypothesis, the residual
pseudocharacter D, is multiplicity free and split, so that by Proposition 4.3.9(b) the ideal of total
reducibility Aj2.A42; vanishes, and hence Ap; = 0, and p’ is upper triangular. Let D1 and D> be
the pseudocharacters described by the upper left and lower right diagonal blocks of p’. then again
by Proposition 4.3.9(b) (and by the non-splitness of p) we have D; = D,,, i = 1,2, and hence by
Theorem 4.3.10(a), p’ is the trivial deformations on the diagonal blocks.

For (c) and (d) we first compute txuniv , = dimp, H'(Gk,ad,). It follows from Lemma 3.4.4
that H°(Gk,ad,) = L, and now formula Theorem 3.4.1(c) yields

dimy, H'(G,ad,) = dn® + 1 + dimy, H*(Gf,ad,).

By Theorem 3.4.1(b) we have dimj H?(Gf,ad,) = dimy Homg, (p, p(1)). The claimed expres-
sions for dimy, txuniv p NOW follow from Lemma 3.4.4 with x = F(1) and our hypotheses. The claim
on R";ni" in (c) now follows from Theorem 3.2.4. The claim on RB“iV in (d) follows from Corol-
lary 3.4.3 provided that we show that H°(Gg,ad,) = 0. But under our hypotheses this follows
from Corollary 2.3.3.

For the assertions on d¢ and d g in (¢) and (d), we first give a formula for dimj, kerde
in either case. We consider lifts p1, py of p to L[e] whose associated deformation classes satisfy

[p1] = [p2] € kerdy C txumv = D,(L[e]). By assertion (b) we have p; = p+e¢ ( 8 i ) for some

cocycle ¢; € Z1 (Gk, pay ®p\z/2). In order to obtain dimy, ker dy, we determine when p; is equivalent
to p2. In this case there exists a matrix U € Mat,, «, (L) such that

+e€ 0 c =
P 0 0 = p2

=({1+el)p(1—-¢U)

e (g o )a-ev)
— pt+e(Up—pU + ( g “ )).

Unn Uiz
Ua1 U
equality is equivalent to

( 0 c2—a > _ ( Ui1pe, Unic+ Uizpa, ) _ ( Pz U1 + Uzt po,Urz + cUsz )
0 0 Uo1pz, Uzic+ Usz2py, Pz, U1 Pz, U2

If we write U = < > with matrices U;; € Maty, xn, (L) for 1 <i,j <2, then the above

Because dimp, H*(Gk, pz; ® py,) = 0 and dimy, H(Gr, pz; @ py,) = 1 for 1 <4,j <2 and i # j,
we deduce that Uy; = 0 and that U;; and Usy are scalar matrices. Finally, the map

—pzy U2 + Ur2pay, € BH(Gi, pay ® Prs)
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is a coboundary. Therefore, co = (U + Uaz)c + ¢ € HY (G, pry, @ py,) and
dimy ker dp = dimp, Extg, (pae,, py) — 1=dimy, H (Gk, psy ® py,) — 1 =dnins — 1, (30)

by the computation for (a). Using dimV = dimkerty + dimimt for a vector space V and a
linear map @ with domain V', and the already computed dimension of t Xuniv o, the proof of (c) is
complete.
For (d) consider the following diagram with left exact rows and where the middle and right
vertical arrows are injective (by definition of t):
de

— s>t
4 tX,D,,

)]

0 —— ker Pred — t(X[L)\niv)red’p e t()?)red,Dp'

0 ——kerp —— b x i,

By a simple diagram chase one deduces ker preq = ker p Nt X31) earp C t Xyniv,p- Next consider
the diagram

0 ——=kerdp ———txuiv , ———imdp ——0

1

0 —— ker dsored - t(X;)“‘i")red,p —imd Pred —> 0

with exact rows and where the left and middle vertical arrows are injective. Because of ker yeq =
kerp N t(X;mv)red’p the map ~ is injective, and we deduce from the 9-Lemma that dim coker o +
dim coker v = dim coker 5. From the tangent space computations for (d) made so far, we deduce
dim coker # = 1. Letting 0 := dim coker o, we must have 0 < § < 1 and dimcokery = 1 — 4.
Arguing as for (¢) and using dimp, tX:x;iC\;l,p = dn? + 1, the proof of (d) is complete, as well. O

5.2 Zariski density of the irreducible locus

The aim of this subsection is to formulate an inductive procedure to prove Zariski density of the
irreducible locus the special fibers of universal pseudodeformation spaces, and to establish some
key steps. Our procedure is an adaption of an analogous result of Chenevier for the generic fiber;
see [Chell, Thme. 2.1]. We shall prove the following main result.

Theorem 5.2.1. Let n > 2 be an integer. Suppose that for all pseudocharacters D' Gxg —F on
Gg of dimension n’ < n the following hold:

(a) yuﬁiv is equidimensional of dimension [K : Qp](n')% +1,

(b) (Y%}iv)‘”pd is Zariski dense in Y%r%iv.
Then for all n-dimensional pseudocharacters D: Gk — F on Gk the subspace (Y%ﬁv)i” C Y%ﬁv
1s Zariski dense.

Let us begin with some preparations. Let ni,no > 1 be integers such that n = ny + ns. Let
D;: G — F be residual pseudocharacters on G g of dimension n;. Addition (D1,Ds5) +— Dy & Do
of pseudocharacters yields a morphism

—~univ ~ —univ > univ

Xﬁl X]Fxﬁz —>X§ (31)
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5 EQUIDIMENSIONALITY AND DENSITY OF THE REGULAR LOCUS

—-univ < univ ~

for D := Dy ® Dy. If Dy # Dj, we define X5, D, = Xp, ]FXD V' and write D, D, for the

—<-univ »

above morphism. In the other case we let Z/2 act on X5, XEX T D, " by exchanging the factors; it
preserves the diagonal, which we denote by AuD“l‘V, and one has an induced morphism

- univ

D, D, XD1 D, = (XDI

—~<Funiv ~ —univ —~<Funiv

x¢ Xp, )/(Z/2) — X1 (32)

Note that away from the A”“l“’ the morphism X Dn VxEX Emv Yuﬁnl 17%1 is an étale Galois cover
with monodromy group Z/2.

Lemma 5.2.2 ([Chell, Lem. 1.1.]). Fori=1,2, letz; € Y%niiv be irreducible points of dimension
1, and let L be a finite common extension of the residue fields k(x;). If D1 = Do, assume also that
x1 # xo. Letx € XquV be the point of dimension 1 with Dy @y (2) L = Dgy ®p(z,) L® Dyy @pe(ay) L-
Let T: Speck(z) — Xﬁniv be a geometric point over x.

Then there is an étale neighborhood (U, py: U — XD ) of T, such that the base change

/. univ 1254
U =U X g TV, — XDI’D2 — U
of 'p, B, along pu is a closed immersion with image Ured = {u € U | u is reducible}. Moreover if
Dy = Ds, then we may choose U such that oy (U) is disjoint from ', DI(A“‘“V).

1

Proof. As recalled above Definition 4.7.8, the universal pseudodeformation D%li" factors via the
universal Cayley-Hamilton pseudodeformation and CH-representation

DQH—univ

CH
—univ PE —CH-univ D —univ

Ry [[GK]] SD D

Consider the strictly local ring O := colimy.z) O(V) for O(V) := Oﬂyv (V), where (V,7) runs
[Sta18 Lem 04HX] Since by Proposi-

tion 4.1.22 the formation of the Cayley-Hamilton quotient 59 D " commutes with arbitrary base
change, for any étale neighborhood (V) of T there is an isomorphism

univ

over all connected étale neighborhoods of T in X3y

: CH-univ —
OW)[Gk])/ CH(DE™ &g O(V)) =5 §p " @ O(V) = Sy

From Theorem 4.3.10 it follows that Sz := colim vz Sy is a GMA of type (n1,n2). In particular,
there exists idempotents e1, ea € Sz with e;+ep = 1 and for i = 1,2 an isomorphism vz ; : €;Sze; —
Mat,,, scn, (OSh). Denote by & = (€, ¥z,i)i=1,2, then also the induced pseudocharacter to Ozh

factors via the natural Cayley-Hamilton pseudocharacter Dg_e_ from Proposition 4.3.5.

. —CH-univ . —suni .
By Proposition 4.7.11, the ring S35 "™ is module-finite as an R%l "_algebra and Noetherian.

Note also that we constructed Sz and O as direct limits over étale neighborhoods. Using spread-
ing out principles from [Gro66, § 8.5], we can thus find a connected affine étale neighborhood
(w,U,p: U — X5 ) of Z, such that the e; can be defined over Sy; and are idempotents therein
with e; + eo = 1, and such that one has isomorphism

’l/JU’i: eigyei — Matnixni (O(U)),

whose base change under O(U) — O is Yz,i. Hence Sy together with & := (€5, Yui)i=1,2
is a GMA. By choosing U sufficiently ‘small’, we may also assume that the pseudocharacter
Dy: O(U)[G] — O(U) induced from D%“i" factors via the induced CH-representation G — (Sy7)*
composed with the natural Cayley-Hamilton pseudocharacter Dz, ¢ .
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Let us write

S, & Maty, xn, (O(U))  Matn, xn, (Ai12)
v= Mathan (.Azl) Matng X Mo (O(U)) .

with finitely generated O(U)-modules A5 and As; together with the structure of a GMA described
in Lemma 4.3.3. Let [ = Aj3A491 + A1 A12 = Aj2A49, be the ideal of total reducibility. From
Proposition 4.3.9(b) we deduce that there exist unique pseudocharacters D;: e;Sye; — O(U)/I
for i = 1,2 such that

(DU mod I) = D1 D DQ.

Denote by Z := Spec(O(U)/I) the locus of total reducibility, by f: Z — U the induced closed
immersion and by g: Z — X anllsz the morphism corresponding to the O(Z)-valued pseudochar-
acters (D1, D). Then the morphism g o f corresponds to the O(U)/I-valued pseudocharacter
Dy mod I and there is a commutative diagram

. (33

f l \LbDl D2

U X%ﬂlv
since ¢y o f and 15, 5, © g both correspond to Dy mod I = Dy & Dy. We need to show that this
diagram is cartesian; then (y = f is a closed immersion, by construction. IL.e., by [Stal8 Def. 01JP]

univ

given any connected affine scheme W together with morphisms f: W — U and ¢': W — X 5 . Ds
such that in the following diagram the solid square commutes

—7 univ
Zﬂg XD1 Dz

f J/LDl Da
U Xanlv’
we need to check that there exists a unique dashed arrow h making the diagram commute.

The morphism @y o f/ = 'B, D, © g' defines an O(W)-valued pseudocharacter Dy, and the
morphism ¢" a pair (D7, Dj) of O(W)-valued pseudocharacters of dimension n; for j = 1,2. By
Lemma 4.3.4 the base change Sy of Sy along f’ is a generalized matrix algebra over O(W) of
type (n1,m2). The definition of 15 5, implies that Dy, = D1®Dj, and from Proposition 4.3.9(b)
we conclude that the ideal

I’ = I ®O(U)7(f/)* O(W) == A12A21 ®O(U)7(f/)* O(W)

of total reducibility of Sy, vanishes. Hence there exists a unique morphism h: W — Z such
that (f')* factors as O(U) N o(Z) UN O(W). Note the g* o h* determines a pair (DY, DY) of
pseudocharacters G — O(W) on G. From Proposition 4.3.9(b) we deduce {D}, D4} = {DY, D4}.
The universal property of X Emv X Yquv and our definition of (15, 5,, X anle ,) implies that (h')* =
g*oh*.

Next we prove Z = U**? under the closed immersion f. By the definition of \p, B, the inclusion
C is obvious. Let therefore y be any point of U™d. To see that y lies on f(Z), let D, be the

70


http://stacks.math.columbia.edu/tag/01JP

5 EQUIDIMENSIONALITY AND DENSITY OF THE REGULAR LOCUS

reducible pseudocharacter corresponding E%ﬁv — O(U) — k(y). By Lemma 4.3.4 the base change
S, = Su Qo) ,‘ﬁ(y)alg of Sy is also a generalized matrix algebra of type (nq,n2). Since D, is
reducible, there exists pseudocharacters D1, Dy: G — ﬁ(y)alg on Gk such that D, = D; @ Ds.
By again applying Proposition 4.3.9 we find that the ideal of total reducibility of the generalized
matrix algebra S, vanishes. Hence O(U) — k(y) factors via O(Z) as was to be shown.

For the final assertion, suppose from now on that D; = Ds, so that m := n; = ny. Consider

the maps
i, = Yus my N (7)y _tr
Ai G — SU — Endo(U)(O(U) ) — End@(U)(O(U) J ) — O(U)
fori=1,2and j =1,...,m, where /\j denotes the exterior power map on endomorphisms. For

every g € G, the vanishing locus of AJ(g) — A}(g) € O(U) is a closed subscheme Y, of U, and hence
the intersection Y := [ ;Y is closed in U. Since z1 # z2 we have (z1,22) ¢ ¢(Y) , and thus
U’ =U \Y is an étale neighborhood of T as required for the last assertion. O

First proof of Theorem 5.2.1. We suppose to the contrary that there exists a nonempty open affine
VcXg such that (X5 )NV = @. Since V # SpecF and the points of dimension 1 are very
dense in X5~ by Lemma A.1.8, there exists a point # € V' of dimension 1 that defines a reducible

pseudodeformation
D,: Gx — k(x)

of D. By Corollary 4.8.4 there exist a finite extension L’/k(x) with finite residue field F’ O T,
residual pseudocharacter D;: Gx — F’ on G of dimension n; for some n; € Ny with n; +n2 =n,
and pseudocharacters Dy, Do: G — Op: of Gk corresponding to points (x1,x2) € Y%nlw QY%H;V
such that D, ®,,) L' = (D1 ® D2) ®0p,, L'. By Lemma 3.2.6, we may and will assume F = F’.

The inverse image of V' under Y%nliv QY%n;V — Y%ﬂv, (D1, D3) — Dy + Dy is an open neigh-
borhood of (x1,x2). By hypothesis (b) of Theorem 5.2.1 we may within this neighborhood re-
place the initially chosen pair by (z1,x2) such that both are irreducible and non-special, and by
Lemma A.1.7 we may further assume that D; is not isomorphic to any of the finitely many Do (m),
m € {1,...,p — 1}, since dimyugiw > 2. Let U; = (Y%niw)n'sl’d. Then we observe that by
Lemma 5.1.6 the schemes (U;)req are regular, and if ¢, ¢ K, then U; = (U;)red.

Let T be a geometric point above . By Lemma 5.2.2 there exists an étale neighborhood

—~ univ

, U, U : — X5 of 7, such that the pullback of v75 7. along pir
U U X5 f h th hi llbkahD2 1

WU, s, Xp.5, —U
is a closed immersion with image U™%. We may replace U by ga,}l(V), which is nonempty since
x € V, and is étale over V, and we may shrink W accordingly. By further replacing U by an
open subset (and accordingly W), we can assume that U is connected and affine. Since W — U
is a closed immersion, the scheme W is affine. But we also have that W — U is surjective as a
map of topological spaces, since all points of V' are reducible. Hence the nil-reduction of W — U
is an isomorphism of schemes Wyeq — ULeq, and as a map of topological spaces W — U is a

homeomorphism. Since the base change of étale morphisms is étale, so is the map W — Y%i%,z

that is the base change of ¢y under 155, 5,. Let U; be the preimage of U; under the i-th projection

—~- univ —~- univ

X5, b, ~ Xp, - Weshrink W (and hence U) to a connected affine open so that the image of W
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in Y%nli’%2 lies in Tj'l N ﬁ2.7 We display the situation in the following diagram:

~ ~ i 5, D I
UNnU,— X7, 5, LSS I —

\T /

W————U

Note also that ¢y (U) intersects trivially with iz, ’5I(A%“f") if D; = Dy. Hence in all cases, the

—~~ univ

morphism Y%nl iVQIFX D, — Y%nl i’%z is an étale Galois cover above 171 N (72 with group Z/2 or
trivial group.

Let w € W be the point corresponding to u € U under the homeomorphism W — U. We
complete at w and its images and pass to nil reductions. This gives

~

a A ~ P~ B A
Oﬁlﬂﬁz,(ml,x2),red — OW,w,rcd I OU,u,rcd <~ OV,m,rcd'

By Lemma A.1.14, the maps o« and 3 are finite étale. The completion @ﬁm@ (21,22) wed €T be
compared with the deformation ring R%n(i;)’l pa)’ using Proposition 4.8.11, it follows that the ring

~

Oﬁmﬁz,(m,m),red is formally smooth over L of dimension d(n? + n3) + 1, because by Lemma 5.1.6
and by hypothesis Theorem 5.2.1(a) the rings RiMy,; are formally smooth over L of dimension
dn? +1. Hence by Lemma A.1.14 all local rings in the above diagram will be formally smooth over
L of dimension d(n? + n3) + 1.

Let now p: Gx — GL, (L) be a non-trivial extension of py by p; for n = nj+ns as constructed in
Lemma 5.1.7 (a). It possesses a universal deformation ring Rgni" for deformation to Ary, because
L =HGk, ad,). Let also R be the universal pseudodeformation ring for D,, and write ¢ for the
natural morphism between associated space:

p: X‘;“i" := Spec Rzniv — X = Specﬁ

The relation to the above is given by the following isomorphism obtained by combining Corol-
lary 4.8.8 and Lemma 3.3.5

R = Oy ,[T7]. (34)

We now consider the map dy: t Xumivp > bg induced from ¢ on tangent spaces at p and D,

respectively, or rather the induced map on nil-reductions

d Yred: tX,‘f,"rie\h»P — t)?mhx.

By Lemma 5.1.7 (¢) and (d) we have ¢ € {0,1} (and 6 = 0 if ¢, ¢ K), such that
dn® — dning +2 46 = dimz, Im(d ¢req )

From (34) and the dimension found for @v,x, we have dimtg =1+ d(n? 4+ n3). This gives the
inequality
dn® —dning + 2 +6 < d(n? +n3) + 2

Using n = nq + ns, we deduce dnins + d < 0, which is absurd since both n; > 0. O

"The intersection l~]1 n 172 is strictly bigger than U; XUs. If for instance X; = Spec L[[T;]], « = 1,2 and U; =

Spec L((T3)). Then Uy N Uz = Spec L[[T1, Tﬂ][ﬁ} contains all but 3 points of Spec L[[T1, T2]].
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5.3 Alternative proof of Theorem 5.2.1

Following a suggestion of the referee, we now present a second proof of Theorem 5.2.1. It is
technically easier than the proof given above, and might be of independent interest. The approach
makes no assertion on the geometry of Y%ﬂv near a reducible point x as in Lemma 5.2.2, but
focuses directly on the completed deformation ring at such an =z and a dimension estimate.

Let R be a Noetherian F-algebra and let A be an associative (possible non-commutative) unital
R-algebra, which is finitely generated as an R-module. For = € Spec R write 4, := A ®g k(x),
where k(z) is the residue field of z; i.e., A, is the fiber at x and not a localization. Let

U={r€SpecR: Ay @p(z) A’ — End,(4)(A,) is an isomorphism}
be the Azumaya locus of A in Spec R.

Lemma 5.3.1. The Azumaya locus U is a constructible subset of Spec R.

Proof. By [Stal8, Lemma 051Z] and Noetherian induction, we can find a flattening stratification
of A as an R-module, i.e., a finite increasing chain of open subsets Uy C ... C U,, = Spec R, such
that if R; is the reduced quotient of R with Spec R; = Spec R \ U;, then U1 \ U; = Spec(R;),
for some f; € R; and A ®g (R;)y, is finite flat over Spec(R;)y,. Hence to prove the assertion on
U, we may assume that A is finite flat over R.

Now let C' and K be R-modules fitting in the exact sequence

0 — K— A®pr A°® — Endr(4) — C — 0. (35)

Because C and K are finitely generated modules over the Noetherian ring R, their support is closed,
and we deduce that U = Spec R\ (Supp CUSupp K) is open in Spec R and hence constructible. [

Lemma 5.3.2. Let x be in Spec R, let R be the completion of k(x) R R at the kernel of the natural
map k(x) Qr R — k(z), and let A = A®pr R. Let y € SpecR be such that A, is an Azumaya
algebra. Then U is non-empty and x lies in the closure of U in Spec R.

Proof. Let z be the image of y under Specﬁ — Spec R, and note that we have induced maps
t: Rfp. — I%/py and k(z) — k(y) for p, C R and p, C R the primes corresponding to z and v,
respectively. Since Ey = A. ®y(z) k(y), and k(z) — k(y) is faithfully flat, the diagram (35) with
A, and k(z) in place of A and R, respectively, implies z € U, so that U is non-empty.

Moreover, by our definitions, the residue map R — R — r(z) factors via R/p, - R\/py — k(x)
with ¢ injective. Hence x € Spec R/p. = {z} C Spec R, so that z lies in the closure of {z} and
hence in the closure of U D {z}. O

Let now R := R%l " be the special fiber of the universal deformation ring for D, so that R is
complete Noetherian local with finite residue field. Let A = g%H_umv be the corresponding Cayley-
Hamilton R-algebra, so that by Proposition 4.7.11 the ring A is finitely generated as an R-module

- univ

and hence Noetherian. In this setting U is precisely the absolutely irreducible locus of X5 = as
explained in [Chel4, Cor. 2.23]; see also Proposition 4.7.18.

Proposition 5.3.3. In the setting just described, the closure of U in Spec R contains all points
x € Spec R of dimension 1 such that D, = D1+ D, where the D; are non-special pseudocharacters
of absolutely irreducible representations p;, i = 1,2, such that p1 % p2(j) for j € {0,+1}.
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Proof. In view of Lemma 5.3.2 we only have to explain how to find y. By Corollary 4.8.8 the ring
R can be identified with the universal pbeudodeformation ring of D,, and we need to show that
the reducible locus in SpecR is not the whole of SpecR

To show this, we compare R with the unlversal deformatlon ring R " where p is a non-split

extension of ps by p;. The existence of p and of R o " was established in Lemma 5.1.7(a). Moreover

by Lemma 5.1.7(c) and (d), respectively, the ring R’ := (Rzniv)md is formally smooth over x(x) of

dimension dn? —|— 1 The map that sends a representation to its associated pseudocharacter induces
a map Spec Rp Y 5 Spec R, and it will suffice to show that the generic point of R’ = (R;mv)red
gives rise to an absolutely irreducible representation of Gk . Let m’ C R’ be its maximal ideal.
Denote by p': Gk — GL,(R’) a representation corresponding to R'. Because D, is multiplic-
ity free, by Theorem 4.3.10(b) the linearization of p’ factors via a GMA of type (n1,n2) inside

Mat,, «n(R') and thus gives a continuous surjective homomorphism

/ Mat'ru X1y (R/) Matman(Jl)
R [GK] — ( Matnzxn1 (I/) MathXng (R/)

for suitable ideals I’,J’ of R’. The reduction modulo m’ of the right hand side arises from the
nonsplit extension p of ps by p1, so that we must have J' = R’, and I’ C m'.

If I’ is non-zero, then after passing from the regular local ring R’ to its fraction field, say E’, we
obtain Mat,, «,(FE’) as the image of the linearization map, and by the theorem of Burnside the cor-
responding representation is absolutely irreducible. If on the other hand I’ = 0, then p’ is reducible

and we apply Proposition 3.4.6 and the discussion preceding it. It follows that dim(REi‘g p)red =

d(n® —ning) + 1 and that the induced map of reduced rings R’ — (Rgfgp)red is an isomorphism.
This contradicts dim R’ = dn? + 1 found above, and so the case I’ = 0 cannot occur. O

Second proof of Theorem 5.2.1. Let U = (X ‘}va)“r be the open locus of irreducible points on
X lll)mv We need to show that the closure of U is the whole space. By the reduction steps given
in the first two paragraphs of the first proof of Theorem 5.2.1 on page 71, it suffices to show that
all points x € Y%ﬂv of dimension 1 such that D, = Dy + D5 with D, irreducible non-special and

Dy # D4 (j) for j € {0,£1} lie in the closure of U. This follows from Proposition 5.3.3. O

5.4 A dimension bound for the special locus

As before, we denote by D: Gx — F a residual pseudocharacter on G, and we let n be its
dimension. Theorem 5.2.1 of the previous subsection provided part of an inductive procedure to
prove the equidimensionality of Y}J{n% for the dimension [K : Q] -n? + 1. It remains to be proved

that (X um};)n'Spd c (X ;‘2‘5)1” is Zariski dense. In this subsection, we shall prove the following
result.

Theorem 5.4.1. Let n > 2 be an integer. Suppose that for all pseudocharacters D Ggr —TF on
Gk of dimension n’ < n with K' a p-adic field the Krull dimension of the space XK, B 1s bounded
by [K': Qpl(n')? + 1, Then for all n-dimensional pseudocharacters D: G — F on GK one has:

(a) The Zariski closure of (X umV)SpCl has dimension at most +[K : Qun? + 1.

(b) (X umv)n =pel (X ‘;215)1“ is Zariski dense.
Before giving the proof, we need the following auxiliary result.
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Lemma 5.4.2. Let RG’]Fﬁ — A be a surjective homomorphism such that A is a domain with
field of fractions K, and set Dy = D%‘i" Ry A. Let H C G be an open normal subgroup and
suppose the following hold: h

(i) D|g is split over F and condition $5,, is satisfied.
(1) Dg := Da ®a K is irreducible and p := pp, gxae is induced from H.

Then there exist a domain A’ € ./Z?”]F that contains A and is finite over A, and a continuous
irreducible pseudocharacter D': A'[H] — A’ that is residually equal to a direct summand D' of
Dy, such that the following hold:

(a) nd$ D' = Dy @4 A’
(b) The homomorphism RH,]F,E' — A’ that results from D’ is surjective.

In particular dim A = dim A’ < dimﬁH P -

Proof. Note first by Lemma 2.1.4(b) and (f) that p = Ind$ p’ for some irreducible representation
o'+ H — GL, (K*®8) such that the representations (p')9, g € G/H, are pairwise non-isomorphic,
and that Res$ p = ®geg/H(P/)g~ Hence Dg|g is multiplicity free, so that we can apply Proposi-
tion 4.8.6 to it.

By what we just observed, conjugation by G/H acts simply transitively on the continuous
pseudocharacters D) from Proposition 4.8.6, and so the A; from Proposition 4.8.6 are independent
of i. Define A’ as any of the A; and let D’: A'[H] — A’ be that pseudocharacter D) for which
D! ® 4, K¥# is the pseudocharacter attached to p’. Then Indg D' @4 K8 = Dy @4 K28, Now
Indg D' is defined over A’ and A is the minimal field of definition of D4 by Corollary 4.7.13. Hence
A is contained in A’. By Proposition 4.8.6 it is then clear that A’ is finite integral over A and lies
in Arg, and moreover that @,cq/p(D')? = D for D' := D' @4 k(A’). Part (a) is now clear.

It is also clear that D’ is a deformation of D'. Since A’ € Argp we have a corresponding
homomorphism EH,F,ﬁ' — A’, and the latter must be surjective by Corollary 4.7.13, since A’ is
the ring of definition of D’. Now by Lemma A.1.2 we have dim A’ = dim A, and the inequality
dim A’ < dimEH,]ij is trivial. O

Proof of Theorem 5.4.1. By Lemma 3.2.6, by possibly enlarging F, we may assume that D is split
over F. Since the number of Galois extensions K’ of K of degree p is finite, we may, by the same
reasoning, also assume that D|G/K is split for any such K’ and for K’ = K (). It is also clear that
Mazur’s condition ®, holds over any such K’ and hence ®p,  holds.
K/
To prove (a), let 7 be any generic point of (X5 )*P°.. Let
! RK,F,B — A

be the corresponding surjective ring homomorphism, so that n = Ker(y). Because D,, is irreducible,
P = PDy®, oy r(n)™ is defined. Since 7 is special, there exists a Galois extension K’ of K such that
either K’ = K((,) or K’ has degree p over K and such that p is induced from Gg:. From
Lemma 5.4.2 we deduce

1

dim A <dim Ry, ;5 = [K': Qp)(n/[K: K])* + 1 = W([

K : (@p]nz) + 1.

~- univ

As the schemes Spec A cover (X Kfﬁ)sf’d and as [K’ : K] > 2, the proof of (a) is complete.
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To prove (b), we argue by contradiction and assume that there exists an open subset V' C X ;- 5
that is entirely contained in (X ‘;Q};)bpd Then dimV < 1[K : Q,]n® + 1 by (b), for V the Zariski
closure of V. Let x be any dimension 1 point of V' and let p: Gx — GL, (L) be an absolutely
irreducible representation over a local field L containing () such that D, = D, ®y) L. Let Rgni"
be the universal ring for deformations of p to Ary. Then 6V;c[[T]] = RU™MY by Corollary 4.8.8
and Lemma 3.3.5. On the other hand dim R‘ani" > [K : Qpn* + 1 by a standard argument using
Theorem 3.4.1. It follows that

%[K QI+ 141> [K:Qn2+1,
and hence 2 > [K : Qp]n?, which implies n = 1. But then x cannot be induced, and hence not
special, and we reach a contradiction. O

5.5 Main results
Let K be a p-adic field, let D: G — F be a residual pseudocharacter on G, and set n:=dimD.
Theorem 5.5.1 (Theorem 1). The following assertions hold:

(a) Y%ﬁv is equidimensional of dimension [K : Qpln® + 1.

(b) (X umv)n'SpCl - YEHV is open and Zariski dense.

(c) If ¢, ¢ K, then (X umv)“'sl”d is regular.

(d) If ¢, € K, then (Xlllymv)?ézpd is regular, and (X %“V)reg is empty.

Proof. Part (a) follows from Corollary 3.4.3, Theorem 5.2.1 and Theorem 5.4.1 by induction on
dim D and [K : Q,]. The same results also prove (b). Parts (c) and (d) follow from Lemma 5.1.6;
the last part of (d) uses Corollary 3.4.3(a). O

Lemma 5.5.2. One has the following estimates:

(a) If n > 1, then |
dim(Y%“v)red — dim Xl[l)mv oK Q1)+ 1,

and in particular dim(X 2™ )red < dim X o
case dim(X 35 )"*d = dim X 5" — 1.

univ

(b) dim(X umv)SpCl <dimXp

— 2 unlessn =2 and K = Q. In the latter

- 2.

Proof. Since (X =™)spel is empty for n = 1, because non-trivially induced representations have
dimension at least 2, part (b) is immediate from Theorem 5.4.1. For part (a), we may assume
that D is split by Lemma 3.2.6. Then (X5 )™ C Us,e5,-5 5, B (X anle2), and now Theo-
rem 5.5.1(a) yields

dim(f%ﬁv)red = max dimX,, +dimX,, = max dni+n3)+2=d((n—1)*>+1)+2.

nit+ng=n nit+nog=n
ny,ng >0 ni,ng >0

The wanted estimate in (a) is immediate. For the remaining assertion note that (Y%ﬁv)red is

empty when n = 1. O
Corollary 5.5.3. Suppose that (, ¢ K and that (Xlgnv)leCl is non-empty, so that e := [K' : K]
divides n, for K' = K((,). Then the Zariski closure of (X umv)SPCl has dimension L[K : Qpn?+1.
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Proof. Let p € Specﬁ%ﬂv be a generic point of (X7 )P, let A = Specﬁ%mv/p with fraction
field K, and let D4 be the corresponding pseudocharacter. Then Spec A contains a dense subset of
dimension 1 points at which D 4 is irreducible and special. But then D4 ® 4 K must be irreducible
and it also must be special, i.e., it is invariant under twisting by the mod p cyclotomic character
x: Gal(K'/K) — F.

Let K’ D K be a finite extension over which there is an absolutely irreducible representation
p: Gxg — GL,(K’) such that Do® 4K’ = D,, and so that p = p®@x. Then by Theorem 2.2.1 we have
eln and after possibly enlarging K’ there exists an absolutely irreducible representation p’: Gx —
GL,/ (K') with n’ = n/e such that Indg; p' = p. Moreover letting D’ = D/, the pseudocharacters
(D")9, g € Gk /Gk are pairwise non-isomorphic and Resgi' D = ®yeqy/a,, (D')?. In particular,
Resgz/ D is multiplicity free. Moreover (D), is a continuous pseudodeformation of E|GK,,
and so it arises from a map E}l(n,l% — Ain Arg.

We deduce from Proposition 4.8.6 (and its proof) that after possibly enlarging K’ again there is
a continuous pseudocharacter D'y, : Gg» — A’ on G for A’ the integral closure of A in K’ and with
Dy, @4 K = D, and moreover A’ lies in Arg: for a finite extension F' of F. Letting D =D,
(mod my/), there is a map o': RuKn,l,%f — A’ in Arp inducing D',,. Moreover the pseudocharacters
(D'4)9, g € Gk /Gk are pairwise distinct.

Let q be a generic point of EUKH,I%/ that lies in the kernel of o/, let B = EHKD,I)%/ /q with quotient
field L, and let Dz be the associated pseudocharacter. Then Dp ®p L is irreducible and the
pseudocharacters (D’3)9, g € Gg/Gg: are pairwise distinct. Then by Theorem 4.6.7, Dg =
Indg; D%: B[G] — B is a continuous pseudodeformation of Indg; D' = D ® F such that
Dp ®p Quot(B) is irreducible and special (invariant by the twist with y). In particular, Dp arises
from a homomorphism a: Rl;{“,%@u:ﬁ‘v — B and the point Ker a0 of Yﬁ%@ﬂ' must be special. By
our construction we have a commutative diagram

_—

|
T

—=univ

B
A
Ry Deur !

/

A,

\

where we write AF’ for the F’ subalgebra of A’ generated by F’ and A, and initially without the
dashed arrow. We deduce that Ker«a is also the kernel of the map to AF’, and so the dashed
arrow exists and is injective (by the definition of A). But then restricting the corresponding

pseudocharacters to G, one deduces that the maps from ﬁ}l(n%/ to B and to a finite extension
of AF have the same kernel, and so B and A’, and hence A must have the same dimension. But
dim B = 1[K : Q,]n? + 1 by Theorem 5.5.1, and this concludes the proof. O

Lemma 5.5.4. Let x be a local or a finite field. Suppose p > 2. Let D;: G, — Kk, i = 1,2, be
continuous pseudocharacters on Gg, of dimension 1, and let D = Dy © Dy. Then

(a) If D1 # Dy(m) for m € {0,x1}, then
(1) there exists a unique non-trivial extension p: Gg, — GLa(k) of Dy by D1,
(2) the natural map E‘};‘iv — ﬁzniv is an isomorphism,
(8) and both rings are formally smooth over k of dimension 5.

(b) If D1 = Dy(m) for some m € {£1}, then Eaniv is not reqular.

(¢) If D1 = Ds, then R‘[‘)‘“V is reqular.
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Proof. The idea for (a) stems from the proof of [Chell, Cor. 4.4] and goes back to Kisin. We regard
the D; exchangeably as pseudocharacters or as representations, because they are of dimension 1.
Lemma 5.1.7(a) guarantees the existence of p as in (1). Since Dy ¢ {Ds, Do(£1)}, Theorem 3.4.1
yields dim Exté@p (D, Dj;) =1 for i # j, and this implies the uniqueness of p up to isomorphism.

univ

Note that once (2) is proved, part (3) follows from Lemma 5.1.7(c). To see (2), let X, := Spec R,

—univ

Xp:=Rp for D:= D; @ Do, write ¢ for the map in part (1), and denote by

d(p: tme — tXD,D

the induced map on tangent spaces. By the formula in Lemma 5.1.7(c), the kernel of d ¢ is zero.

Because p > 2 we also have dim Ext%;n (D;, D;) = 2 for i = 1,2. Consider now the following exact
Up

sequence from [Bell2, Thm. 2] with p; = D;

0— @i:l,? EXtéK (piv Pi) — dimtXD,D ®f€(3€) L (36)
h
— Extg, (p1, p2) © Ext, (p2, p1) — @y 5 Exter, (pi, pi)-

It implies dimtx, p < 5. Hence d¢ must be an isomorphism and dimtx, p = 5. This implies
that ¢ must be surjective, and hence an isomorphism since the target is formally smooth over k.

To prove (b), note that we have Ext?(p;, p;) = 0 and Ext'(p;,p;) is of dimension 1, while
Ext'(pi, pi(m)) is 2 for m = 1 and 1 for m = —1. Hence (36) yields dim, tx, p = 6. However
dim Xp = 5 by Theorem 5.5.1, and hence R is not regular.

Finally we show (c). Because p > 2, we may apply [Chell, Thm. 3.1] in exactly the same way,
as done in [Chell, Lem. 2.5]: Using that the mod p reduction of Gab is isomorphic to (Z/p)?,
one has dim, Hom(Gq,,x) = 2. dim, Sym(Gq,,x) = 3. and dim, Alt(GQ ,k) = 0, and hence
dim, tx, p = 5. We now conclude using dim Xp = 5 by Theorem 5.5.1. O

We now characterize the singular locus when ¢, ¢ K.

Theorem 5.5.5 (Theorem 2, [Chell, Thm. 2.3]). If (, ¢ K, then the following hold:
(a) The closure of X := (Y%ﬁv)spd in Y%‘iv lies in (Y%ﬁv)sing'
(b) Ifn>2 or [K: Q) > 1, then X := (X5 )red ¢ (XF)sine,

(c) Ifn=2, K =Q,, and x € Xy corresponds to a pair (D1,D2) of 1-dimensional pseudochar-
acters, then x € (leljmv)smg if and only if Do = Dy(m) for m € {£1}.

Proof. We know from Proposition 4.7.11 that RY D MY is a complete Noetherian local ring so that by
Lemma A.1.1(a), (X ‘,‘;’”)Slng is closed in X%mv Observe that if X; # @, then its Zariski closure
X; has dimension at least 2: for X5, this is clear from Lemma 5.5.2(a), for X; from Corollary 5.5.3.
Hence Proposition A.1.11 shows that the points of X; of dimension 1 are dense in Xj.

To prove (a), let € X; be of dimension 1. A standard computation of tangent spaces as in
the proof of Lemma 5.1.7 (¢) shows dim H'(Gk,ad,,) = dn® + 2, while dim R}™ = dn® + 1. Tt
follows from Lemma 3.3.5 that x is not regular on Y%ﬂv

For the proof of (b), we assume without loss of generality that D is split. Then (X Emv)red
is the image of the maps 155 5, from (32) for all D1, Dy such that D = D; & D». Fix such a
pair and let n; be the dimension of D;. Because of Theorem 5.5.1 it suffices to consider pairs
x = (x1,29) with z; € (Y%‘ "yn-spel: and we may also assume that D, is distinct from the finitely

many D,,(m), m € {1,...,p —1}. We compute the tangent space dimension of RD ¥ this time,
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using (36) from [Bell2, Thm. A] which also holds for p,, in place of p;. We conclude as in the
proof of [Chell, Lem. 2.4]: dimyp, Hl(GK,adpmi) > 1+dn?2, dimp, Exték (Pz;s Prs_;) = dning, and
the second extension groups vanish, since the D,, satisfy D,, # D, (1). Hence

tSpecFJDrfiv = d(n% + n%) +2+ d2n%n§ > dn? + 1+ (dnlng — 1)2.

This dimension is strictly larger than dn? + 1, unless dning = 1, i.e., ny = ny = 1 and K = Q,,.
—5univ

However dim R~ = dn? 4+ 1 by Lemma 3.3.5 and Theorem 5.5.1, and it follows that x cannot be
regular, proving (b).

Concerning (c), note that if 2 = (Dq, D2) is any point of dimension at most 1, then the assertion
follows from Lemma 5.5.4. Since such points are Zariski dense in the closure of any point of
dimension at least 2, the assertion in (c) follows in general. O

Remark 5.5.6. Note that Theorem 5.5.5 reproves a result of Pagkiinas, namely [Pas13, Prop. B.17]:

suppose that n =2, p > 2, K = Q,, and D: Gq, — F is a direct sum D1 @ D5 of 1-dimensional

—5univ

characters D; sucht that Dy # Dj(m) for m = 0,+1. Then Ry = = F,[[Xq,..., X5]].

Theorem 5.5.7 (Theorem 3). The ring E%ﬂd satisfies Serre’s condition (Rz), unless n = 2,
K = Qy and D is trivial.

Proof. By Theorem 5.5.1 and Lemma 5.1.6, the subset (Y%Itirzd)“'sf’d is regular, open and Zariski
- univ

dense in X3 ,.q- Thus Lemma 5.5.2 implies the theorem unless n = 2 and K = Q,. Also,
if D is irreducible, then so is any lift, and so (X oq)"
by Lemma 5.5.2. Suppose from now on that K = Q, and D = D, & D, for 1-dimensional

pseudocharacters D; : Gq, — F on Gg,, and suppose now also p > 2 which was excluded in this

is empty. Now again we conclude

case.

The locus of z € X5 := (Y%ﬂv)red corresponding to a pair (D1, D) of 1-dimensional pseu-
docharacters, such that Dy = Dj(m) for m € {£1}, can be realized as the image of X 15, . Hence
it has dimension at most 2 because of Corollary 3.4.3. Outside this locus points are smooth by The-
orem 5.5.5 (and the density of points of dimension 1). Tt follows that (X5 = )**®*1"8 has dimension

at most 2 which is less than 5 — 2 = 3, so that then Y%ﬂiv satisfies (Rz), also. O
A Appendix. Auxiliary results on rings, algebras and rep-
resentations

In this appendix we collect some results used in various parts of this work. We also prove some
minor facts that could not be found directly in the literature.

A.1 Commutative Algebra
Complete local rings, integral extensions and regularity

A domain B with quotient field K is said to satisfy N-2 if for any finite field extension L of K, the
integral closure of B in L is a finite over B. A ring A is called a Nagata ring if A is Noetherian
and for every prime ideal p of A the ring A/p satisfies N-2, see [Stal8, § 032E].

Lemma A.1.1. If A is complete Noetherian local Ting, then the following hold:
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(a) A is a Nagata ring, and hence the set of regular points of Spec A is open in Spec A.
(b) If A is a domain with fraction field K and perfect residue field, then [K: KP] < oco.

Proof. Part (a) is [Stal8, § 032W] combined with [Gro65, Thm. (6.12.7)]. Part (b) is proved in
[Hoc07, Prop. (d),(g)] O

Lemma A.1.2 ( [Mat80, 13.C, Thm. 20]). If B is a domain, and if B’ C B is a subring such that
B if finite over B’, then dim B = dim B’.

Recall that for a prime p of A, the height of p is defined as ht p = dim R,,.

Definition A.1.3. A commutative ring A is said to satisfy (Serre’s) condition (R;), if A is regular
in codimension at most ¢, i.e., if the local ring Ay is reqular for every prime p of height < i.

Density of points of dimension one

The next series of results stems from [Gro66, §10.1-10.5], except in one case where we give a
direct reference. Let X be a topological space. It is called Noetherian if every descending chain of
closed subsets becomes stationary. It is called irreducible if it is not the union of two proper closed
subsets. If X is Noetherian, a subset is called constructible if it is a finite union of locally closed
subsets of X, i.e., of subsets that are the intersection of an open and a closed subset of X. The
closure of a subset Z C X is denoted by Z. For a subset Z of X its dimension dim Z € NU {co}
is the maximal length n of a chain Yo C Y1 € ... C Y, C Z of irreducible closed subsets Y; in X.

Definition A.1.4. A subset Xy of X is called very dense in X if every nonempty locally closed
subset Z C X satisfies Z N Xg # .

If Xy is very dense in X, it is clearly dense in X.

Lemma A.1.5. If X is very dense in X, then XoN Z is very dense in Z and dense in Z for any
locally closed set Z in X.

Proposition A.1.6. For a subset Xg of X the following conditions are equivalent:
(a) Xq is very dense in X ;
(b) Under X' — XoN X' the open subsets in X are in bijection to those in X.
(c) Under X' — Xo N X' the closed subsets in X are in bijection to those in Xj.

In the following we set X<1 := {x € X : dimxz < 1}. Since the union of finitely many irreducible
subsets of dimension at most ¢ has dimension at most i. we find:

Lemma A.1.7. If U C X satisfies dimU > 2, then no finite subset of U<y is dense in U.
An important source for very dense subset of schemes comes from the following result:

Lemma A.1.8 ([Mat80, (33.F) Lem. 5]). Let X = Spec A for a Noetherian ring A. Then the set
X<1 1s very dense in X.

From Lemma A.1.8 and Lemma A.1.5 one deduce:

Corollary A.1.9. Let X = Spec A for a Noetherian ring A, and let Z C X be constructible. Then
X<1NZ is very dense in Z and dense in Z.
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Definition A.1.10. The space X is called Jacobson if {x € X : dimx = 0} is very dense in X.

A scheme is called Jacobson if the underlying topological space is Jacobson; A ring A is called
Jacobson if the scheme Spec A is Jacobson. For us the following result is of importance:

Proposition A.1.11. For a Noetherian local ring with A mazimal ideal m 4 the scheme Spec A \
{ma} is Jacobson.

Besides our reference to [Gro66], Proposition A.1.11 can also be found in [Stal8, 02IM]

Etale morphisms and étale neighborhoods

We recall some terminology and a result on étale morphisms to be used in Section 5.

Definition A.1.12 ([Stal8, § 00UO and Def. 02GI]). (a) A ring map A — B is called étale if it
18 a smooth ring map of relative dimension zero.

(b) A morphism f : X — Y of schemes is called étale at x € X if there is an affine open
neighborhood Spec(B) = U C X of x and an affine open Spec(A) =V C Y with f(U) CV
so that the corresponding ring map A — B is étale. We say that f is étale if it is étale at
each point x € X.

Definition A.1.13 ([Stal8, Def. 03PQO]). Let X be a scheme.

(a) A geometric point of X is a morphism T: Speck — X where k is an algebraically closed
field.

(b) One says that T is lies over € X to indicate that = is the image of T.
(c) An étale neighborhood (U, @, @) of a geometric point T € X is a commutative diagram
U
%)
Speck =z X,

where @ is an étale morphism of schemes and w is a geometric point of U.

Lemma A.1.14. Let ¢: U — X be an étale morphism between schemes U and X. Let u be a
point of U and denote by x its image p(u). Consider the local homomorphism ¢, : Ox o — Oy
induced from @. Then

(a) The completion Dy : @X@ — @U,u of vy 18 finite étale; its degree is equal to [k(u) : k(x)].

(b) The ring (5;(@ is reqular if and only if (/D\Um is reqular, and in this case both have the same
dimension.

Proof. Part (a) is [Stal8, Lem. 039M] and the remark following it. For part (b) note that by
étaleness the tangent spaces at the closed point have the same dimension, and by finite étaleness
the ring @U,u is free of finite rank over O x,» and hence they have the same dimension. From this
(b) follows easily. O
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A. Finite dimensional algebras and modules

A.2 Finite dimensional algebras and modules

Let K be a field. We gather some results, mostly from [CR62], on not necessarily commutative
K-algebras S and modules M over them, assuming that either the algebra or the module have
finite K-dimension. Our intended applications are to S = K[G] for a possibly infinite group G,
or to G-modules of finite K-dimension; note that if G is profinite, K is a topological field and M
is a K[G]-module of finite K-dimension with a continuous G-action, then all G-subquotients of M
carry a continuous action. So we need not worry about continuity in the following.

Let first S be a K-algebra of finite K-dimension. In this case the sum of all nilpotent left ideals
of S is a two-sided ideal of S, the radical of S and denoted Rad(S), see [CR62, § 24]. It is the
maximal nilpotent two-sided ideal of S. The radical is zero if and only if .S is semisimple; in this
case S is the product of simple K-algebras (of finite K-dimension). If K’ is any field extension of
K, then

Rad(S) @k K' C Rad(S @k K). (37)

Definition A.2.1. We call a K-algebra S of finite K-dimension absolutely semisimple if S @k K18
is semasimple.

Remark A.2.2. Suppose that S is absolutely semisimple. Then by (37) it is semisimple. By the
Theorem of Artin-Wedderburn, the algebra S ®x K*# is a product of matrix algebras over K.
From this one deduces, by repeated application of (37), that S ®g K’ is semisimple for any field
extension K’ of K. Suppose now that S is only semisimple. By considering simple factors D; of S,
one shows that S is absolutely semisimple if and only if the center of each D; is separable over K.

Lemma A.2.3. Let S a K-algebra of finite K-dimension and write S’ for S @x K’ and any field
extension K’ of K.

(a) There exists a finite extension K' of K such that S’/ Rad(S’) is absolutely semisimple.

(b) If S/Rad(S) is absolutely semisimple over K, then there exists an extension K' of K with
[K': K] < (dimg S)! such that S’/ Rad(S") is a product of matriz algebras over K'.

(¢) If K is finite, and if we write S/Rad(S) = [[, Matq, xa, (K;) for d; > 1 and K; finite over K,
then we may find K" as in (b) so that [K' : K] divides [],[K; : K].

Proof. For (a) note first that for S8 := S @y K8 the ring 5S¢/ Rad(52) is semisimple, and
trivially absolutely semisimple. Let K’ be a finite extension of K over which S’ := S®g K’ contains
a sub-K’ vector space I with I ®x K& = Rad(S*#). Considering I inside Rad(5?8), it follows
that I is a nilpotent ideal of S’; so that I C Rad(S’). But then using (37) and the faithful flatness
of K/ — K28 it is straightforward to see that I = Rad(S’) and that S’/I is absolutely simple.

To prove (b) note first that we may replace S by S/Rad(S), again by (37), so that we may
assume that S is absolutely semisimple. Write S as a product of division algebras D;, for i in a
finite index set I, and write K; for the center of D; and let d; € N be such that d? = dimg, D;.
We consider all finite field extensions of K as subfields of a fixed algebraic closure K*& of K. Let
K’ c K& be the join of the normal hull of all K;. By Remark A.2.2, K’ is separable over K and
for each i we have K; ®x K’ = (K")™ for m; = [K; : K]. Note also that [K' : K] < [],.; m;!. Let
E; C D; be a maximal subfield over K; so that D; ®k, E; = Matg,«q, (E;). Let E' D K& be the
join of K’ and the fields E;, ¢ € I. Then

E/D]Ei
S @k E = H(Di Rk, (K; 9x K') @ E') = H(D,» ®k, E)™ H(Matdixdi (E")™:.  (38)
el i€l i€l
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Hence E is a field as in (a). Moreover [E' : K] < [[,c;(d;i - m;!) < [, (di - [K; : K])!. Since
> ier(di[K; - K]) < 3., d?-m; = n, using that multinomials are integers, we deduce [E : K] < n!,
and this proves (b).

To see (c) note that each K; is normal over K and for each degree there is a unique extension of
K of that degree in a fixed choice K*&. Hence in the proof of (b) we find [K’ : K] < lem;e;[K; : K].
Moreover over K; the ring D; is already split, and so we can take E’ = K’. The assertion now is
clear. O

Remark A.2.4. (a) Note that the hypothesis in Lemma A.2.3(b) holds whenever K is perfect.

(b) A version of Lemma A.2.3(a) only under algebraicity hypotheses for S over K can be found
in [Chel4, Lem. 2.14].

(c) It is possible to give effective bounds in Lemma A.2.3(b) also without any separability hy-
potheses. But the proof is longer and we do not need the result.

Let now S be any K-algebra, not necessarily of finite K-dimension. Let M be an S-module
of finite K-dimension. If M is semisimple, the representation M ®x K& need in general not be
semisimple over S8 := § @y K8 8

Definition A.2.5. We call M absolutely semisimple, if M @x K& is semisimple as an S*-
module.

We call M absolutely completely reducible if it is semisimple and all its irreducible summands
are absolutely irreducible.

Remark A.2.6. If M is absolutely completely reducible, it is clearly absolutely semisimple. If M
is absolutely semisimple, it is absolutely completely reducible if and only if for each irreducible
summand N of M the natural map K — Endg(N) is an isomorphism, see [CR62, 29.13]; the latter
condition is equivalent to Endg(M) being a product of matrix algebras over K.

For the following note that if N is a second S-modulo of finite K-dimension and K’ is any field
extension of K, then by [CR62, 29.2] one has

HomS(M, N) Rk K = HOIIlS®K]K/ (M XK K/, N ®k KI) (39)

Lemma A.2.7. Suppose M is absolutely semisimple. Then the following hold:
(a) The K-algebra Endg(M) is absolutely semisimple.

(b) If K" D K is an extension such that Endgs(M) ®x K’ is a product of matriz algebras, then
M @k K’ is absolutely completely reducible.

Proof. To prove (a) it suffices to assume that M is irreducible. Then D := Endg(M) is a skew
field of finite dimension over K. By (39) we have

D @k K*& = Endgg, g (M @x K*8).

By hypothesis M ®g K8 is semisimple over S ®x K*&. By Remark A.2.6, D @k K?# is then a
product of matrix algebras over K*&. This proves (a). Part (b) is immediate from (39), since it
implies K’ 2 Endgg.x’(N) for every irreducible summand of M @ K'. O

Remark A.2.8. For K’ as in Lemma A.2.7(b) one can bound [K’ : K] by ((dimg M)?)! using
Lemma A.2.3(b).

81f S is a purely inseparable finite field extension of K and M = S, then S ®x S is not semisimple.
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A.3 Absolutely irreducible mod p representations of the absolute Galois
group of a p-adic field

This subsection gives the proof of the classification of irreducible finite dimensional representations
of Gk for a p-adic field K over a finite field of characteristic p, and some complements.

We begin with some preparations and reminders: Recall the classification of tame characters
of the inertia group I of G from [Ser72]: Let m denote some natural number. Let k*& be
the residue field of K®# and set ¢ := |k|. Let in the following ¢ € Gk be any element that
maps to Frobenius in Gj. Let K™ C K' C K& denote the maximal unramified and maximal
tamely ramified extensions of K, respectively. Denote by K,, C K" the unique extension of K
of degree m and by k,, C k¢ its residue field. If w is a fixed choice of uniformizer of K and

t nr( ¢qm-—1 t _ 13 t
K! = K"( "), then K*" = lgm€N21 K . The characters

m_,
W Iy == Gal(K'/K™) — Gal(K%, /K™) 5 pigm 1 (K™) 2 pgm 1 (k*8) = k), 0 (7(;;_\1/\/?7
form an inverse system, [y = @{ké:meN} is pro-cyclic and I? = Ii; see [Ser72, Props. 1 and 2].

A continuous character w: Iy — (k*8)* is called of level m (with respect to k) if m is the
smallest integer such that w factors as w = ¢ o w,, for some homomorphism ¢: k) — (]Fglg)x;
since I is pro-cyclic this is equivalent to w having order a divisor of ¢"* — 1 with m minimal; in
particular the number of such characters is finite. For any m > 1, let P,,, := Homy (K, F;lg), and
set Wy, r 1= T 0wy, for T € P,,. For any 7 € P, we have P,,, = {Tqi |¢=0,...,m—1}. Moreover
o € Gk as fixed above satisfies o701

If w is of level dividing m, it can be written as w = wy, . for any 7 € Py, and some 1 €
{1,...,¢™ — 2} (that depends on 7). Call r € {1,2,...,¢™ — 2} primitive for m (and q) if there is
no proper divisor d of m such that r is a multiple of (¢™ —1)/(¢% — 1); equivalently, 7 is primitive,

=79

if its base ¢ expansion 7 = [ey,—1€n—2 ... e1€0]q, With digits e; € {0,...,¢ — 1}, is preserved under
no cyclic digit permutation but the identity. Then the level m is minimal for w = wy, . if and only
if  is primitive for m. In the latter case, the orbit of w under conjugation by ¢ has exact length m.
recall that the local Artin map is an isomorphism I?;fl - G%’ that

m_q

To extend wy, » to Gk

m?

maps Of  to the inertia subgroup of G4 ; the latter surjects onto Iy /(I;)? ~*. The choice of @
gives an isomorphism IA(,fI ~ 7 x le(m? it induces a homomorphism pry: Gk, — I;/(I;)7 ~*. We
define
Omor: Gre,, 23 I /(L) 771 22 kX T (k18) %,
Finally, for A € (k*'#)* and a finite extension field K’ D K, we write fig, y: Ggr — (k*&)* for
the unramified character of G+ that sends a Frobenius automorphism to A~! € k218,
The following is the main result of this subsection.

Lemma A.3.1 (Berger, Muller). Let p: Gx — GL, (k®) be an n-dimensional irreducible contin-
uous representation. Let F C k™8 be a finite field that contains k,. Then the following hold:

(a) There exists \ € (k¥8)*, 7 € P, and a primitive number r € {1,2,...,q" — 2} such that

(b) p can be defined over F if and only if \™ € F.

In particular, given n there are only finitely many isomorphism classes of absolutely irreducible
representations G — GL, (F).

84



A APPENDIX. AUXILIARY RESULTS ON RINGS, ALGEBRAS AND REPRESENTATIONS

Proof. The proof of (a) is essentially that of [Ber10, Cor. 2.1.5] for K = Q, as extended in [Mull3,
Prop. 2.1.1] to any K. We give a complete proof of (a), since it also serves to prove (b). Note that
the last assertion is immediate from (a) and (b).

To prove (a), let p: Gg — GLy, (F*#) be irreducible. Then the wild ramification subgroup Px of
G acts trivially via p: the group Pk is normal in Gk and a pro-p subgroup. If its action on (]Falg)"
was not trivial, then the invariants ((F*'#)")”x would be a non-trivial proper subrepresentation of
G . But this is impossible, since p is irreducible.

We deduce that the restriction p|r, factors via Iy, and hence is a direct sum of 1-dimensional
continuous characters of I;. Fix one such character w and write w = wy, . for m the level of w, some
7€ Ppandr € {1,...,¢"™ —2} primitive, and let @ := &, . It follows that 0 # (p|a,, @©~')'x,
and hence we can find X' € (k*£)* such that fig,, » ® © is a subrepresentation of p|c, . Let

my

A € k8 be such that A™ = X so that jix, v = fixa|c «,,- Lhen by Frobenius reciprocity

dZE (B @ firc,, v) =2 (IdZE D) @ firc a

admits a non-zero homomorphism to the irreducible representation p. By the primitivity of r, the
orbit of w under conjugation by o has length m = [Gk : Gk, |, and it follows that Indgi w is
irreducible by the criterion of Mackey, see Lemma 2.1.4(e). This yields the isomorphism

p= (Indg;n Opr) ©Tige s

and moreover that m = n, proving (a).
For (b) assume first that p is defined over F. From our definitions and our hypothesis on |F|

mr

is it clear that p' := Indgﬁm Wy, , is defined over k,, C F. It follows that det p’(o),det p(o) € F*.
Since det p(o) = A" - det p’(0), we deduce \™ € F. For the converse, let A € (IF;;Ig)>< satisfy \™ € .
From Lemma 4.6.6 one deduces that the characteristic polynomial of any o € G acting via p lies
in F[t]. It follows from the triviality of the Brauer group of a finite field and [CR62, Sect. 70] that

the representation p can be defined over F. O

A.4 A variant of a result of Vaccarino

In Theorem A.4.4 of this subsection, we prove a variant of the main theorem of Vaccarino from
[Vac09] for group rings of free groups instead of free associative algebras. We use this result in the
construction of induction for general pseudocharacters in Theorem 4.6.7.

Let us first introduce some notation. For a set X, let FM(X) be the free monoid over X
and let FG(X) be the free group over X; we regard FM(X) as a submonoid of FG(X). We
define Z{X} := Z[FM(X)] as the monoid ring of FM(X) over Z; in other words, Z{X} is the
free associative Z-algebra in the indeterminates € X. We also define Z{X*} := Z[FG(X)] as
the group ring of FG(X) over Z and note that Z{X} is a subring of Z{X®*} via the inclusion
FM(X) C FG(X). Let further Fx(n) be the the polynomial ring Z[{,;; : « € X,1 < 4,5 < n]
in indeterminates &; ; ;, i.e., the commutative ring of matrix coefficients of generic n x n-matrices
over X. Then one has the natural generic matrices representation

px: Z{X} — Matnxn(Fx(n)), =+ & = (&uij)i<ij<n-

Let Ex(n) C Fx(n) be the subring generated by the coefficients of the characteristic polynomials
of the matrices px(w), w € FM(X). The associated degree n pseudocharacter D, , cf. Defini-
tion 4.1.4, factors through a unique Ex (n)-valued pseudocharacter

PX

Dx =D, : Z{X} — Ex(n),
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as follows for instance from [Chel4, Cor. 1.14] using Amitsur’s formula.
Let D% : Z{X} — R%f{‘i)‘g} ,, be the universal n-dimensional pseudocharacter of Z{X} from
Proposition 4.2.1, so that one has a unique homomorphism «ax : %‘{13‘(’} , — Ex(n) in CAlgz with

ax o D% = Dx. The following result is an important theorem of Vaccarino.

Theorem A.4.1 (Vaccarino; [Vac09, Thm. 28]). The map ax: R;f{’ix"} n — Ex(n) is an isomorph-

univ

ism, and in particular RZ{X} » 15 a domain and a free Z-module.

In the remainder of this section we shall extend the pseudocharacter Dx : Z[FM(X)] — Ex(n)
to an explicit pseudocharacter Dx+: FG(X) — Ex+(n) on FG(X) and prove that the extension
has again a universal property. The following lemma provides some required auxiliary results.

Lemma A.4.2. Let G be a group and let M C G be a submonoid that is also a generating set of
G (as a group). Let A be in CAlgy. Then the following hold:

(a) If D: A[M] — A is a pseudocharacter of degree n, and if m € M is an element such that
Ap.(m) € AX, then the class of m is a unit of A{]M]/ CH(D) and its inverse is the class of

n—1

apm = Apa(m) ™t S (1)1 A p i (m) m
1=0

(b) Let D,D": A[G] — A be pseudocharacters of degree n. Then we have:
(1) The canonical map A[M| — A[G]/ CH(D) is surjective.
(2) If B C A is a subring such that D(B[M]) C B and Ap (M) C B*, then D(B|G]) C B.
(3) 1f Dlapgy = Dy, then D =D
Proof. For (a) simply note that the Cayley-Hamilton identity xp(m,t)|t=m = 0 holds in the ring

A[M]/ CH(D). Because 1 —m - qpm = (—1)"Ap »(m)~ - xp(m,t)|t=m, Part (a) follows.
To see (b)(1), it suffices to show that the class of any g € G in A[G]/ CH(D) lies in the image of

A[M]. Because M generates G, we can write g = mi' -m5? -...-mtr for suitable my,...,m, € M
and €1,...,&, € {£1}. Note that Ap ,(m;) € A* as observed before Definition 4.1.5. So in the
formula for g we can by (a), whenever €; = —1, replace the occurring m;l by ¢p.m; € A[M], and

this shows g € A[M] + CH(D).

We turn to (b)(2). As we assume Ap (M) C B*, the argument in the previous paragraph
now shows that B[G] C B[M]+ CH(D). By the further hypothesis D(B[M]) C B we deduce that
all characteristic polynomial coefficients of any g € G lie in B, and Part (b)(2) now follows from
Proposition 4.1.10 quoted from [Chel4].

Finally we prove (b)(3). Let us go back to the argument for (b)(1). It replaces an element z of
A[G] by using the Cayley-Hamilton identity by an element 2’ in A[M] in such a way that in the
replacement, which used gp,, from (a), only values involving D| ajas] were used. It follows that the
construction of ' from z is the same whether we use D or D' since we assume D|a[as = D'| a(n-
Therefore we have D(z) = D(2') = D'(2’) = D(x) for all z € A[G], and we are done. O

Let us now turn to the construction of px+ and its properties. To extend px to FG(X), we
wish to invert &, € Matgxqa(Fx(n)), and so we need det(&,) to be a unit; observe that det(&;)
is a coefficient of the characteristic polynomial of px(x) and hence lies in Ex(n). We define the
subrings Fx+(n) = Fx(n)[det(¢,)™! : 2 € X] and Ex=(n) = Ex(n)[det(&)~! : 2 € X] of the
fraction field of the integral domain Fx(n) by adjoining the inverses of det(,;) for all z € X to
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Fx(n) and to Ex(n), respectively. It is now clear that the representation px has a canonical
extension to a representation

px+: Z{XF} — Mat,upn (Fx=(n)), z+— &.
Proposition A.4.3. The pseudocharacter
Dxs =D, ,:Z{X*} = Fxz(n)
associated to px+ takes values in Ex+(n) C Fx+(n), and Ex+(n) is the minimal such ring.

Proof. Let M = FM(X) C G = FG(X), B = Ex+(n) C A = Fx+(n) and D = Dx+ so
that D|p) = Dx ®pgy(n) Ex+(n). Since Dx is defined over Ex(n) we have D(B[M]) C B,
and by definition of Ex+(n) we have Ap, »,(X) C B* and hence by multiplicativity of D also
Ap, n(M) C B*. The first assertion on Dx+ now follows by applying Lemma A.4.2(b)(2).

The minimality of Ex+ (n) is straightforward: By Theorem A.4.1 the target ring has to contain
Ex(n), but it also has to contain the elements Dx+ (z71) = det(£,)~! for all x € X. O

From now on, we regard Dx+ as a pseudocharacter
Dx+: Z{X*} = Ex+(n).

Let D%, : Z{X j[} — R;r{‘i)zi},n be the universal n-dimensional pseudocharacter from Proposi-

univ

tion 4.2.1. By the universal property of I2; (X+1,n0 there is a unique homomorphism
Qx+: R%?I)‘éi}m — Exx+ (n),

such that Dx+ = ax+ o D% .. The following variant of Theorem A.4.1 is the main result in this
subsection.

Theorem A.4.4. The map ax+ is an isomorphism, and in particular:
(a) 2‘{‘}i} ,, s a domain and a free Z-module.

(b) The pseudocharacter DY, is associated to the genuine representation px+ of FG(X).

Proof. We directly prove that the pair (Ex+(n),Dx+) has the universal property of the pair
( %f{‘i)‘(’i}’n, D%.). So let D¥: A[FG(X)] — A be a pseudocharacter of degree n. Its restriction
D := D*| A[FM(x)] 18 an A-valued pseudocharacter on FM(X). Hence by the universal property of
Ex(n) from Theorem A.4.1 there is a unique homomorphism «: Fx(n) — A such that D = coDx.

Now Ap+ ,(g9) € A* for all g € FG(X) as noted above Definition 4.1.5. So for x € X the image
of det(§;) = Apy n(x) under « is the unit Ap=+ , () € A*. Therefore o has a unique extension
at: Ex+(n) — A. Let D' be the A-valued degree n pseudocharacter a® o Dx+ on FG(X).

By construction, D’ and D* agree when restricted to A[FM(X)]. From Lemma A.4.2(b)(3)
we conclude that D’ = D%, i.e., that D* = a® o Dy, and this shows the existence of an a® as
required for the universal property of (Ex+(n), Dx+). The uniqueness of a is clear, because its

restriction to Ex (n), i.e., the map «, is unique, and the extension from a to a™ is also unique. [

87



REFERENCES

References

[AG60] M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer.
Math. Soc. 97, 367-409 (1960).

[Bab19] M. Babnik, Irreduzible Komponenten von 2-adischen Deformationsrdumen, J. Number
Theory 203, 118-138 (2019).

[BC09] J. Bellaiche and G. Chenevier, Families of Galois representations and Selmer groups,
Astérisque (324), xii+314 (2009).

[Bel12] J. Bellaiche, Pseudodeformations, Math. Z. 270(3-4), 1163-1180 (2012).

[Berl0] L. Berger, On some modular representations of the Borel subgroup of GL2(Q,), Compos.
Math. 146(1), 58-80 (2010).

[BIP21] G. Bockle, A. Iyengar and V. Paskiinas, On local Galois deformation rings,
arXiv:2110.01638 (2021).

[BIP22] G. Bockle, A. Iyengar and V. Pagktinas, Zariski density of crystalline points, Preprint
(2022).

[BJ15] G. Bockle and A.-K. Juschka, Irreducibility of versal deformation rings in the (p, p)-case
for 2-dimensional representations, J. Algebra 444, 81-123 (2015).

[BKM21] G. Bockle, C. B. Khare and J. Manning, Wiles defect for Hecke algebras that are not
complete intersections, Compositio Mathematica 157(9), 2046-2088 (2021).

[CDP15] P. Colmez, G. Dospinescu and V. Paskuinas, Irreducible components of deformation
spaces: wild 2-adic exercises, Int. Math. Res. Not. IMRN (14), 5333-5356 (2015).

[Che43] C. Chevalley, On the theory of local rings, Ann. of Math. (2) 44, 690-708 (1943).

[Chell] G. Chenevier, Sur la variété des caractéres p-adique du groupe de Galois absolu
de Qp, Preprint (2011), http://gaetan.chenevier.perso.math.cnrs.fr/articles/
lieugalois.pdf.

[Cheld] G. Chenevier, The p-adic analytic space of pseudocharacters of a profinite group and pseu-
dorepresentations over arbitrary rings, in Automorphic forms and Galois representations.
Vol. 1, volume 414 of London Math. Soc. Lecture Note Ser., pages 221-285, Cambridge
Univ. Press, Cambridge, 2014.

[CR62] C.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras,
Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley
& Sons, New York-London, 1962.

[CR81] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I, John Wiley & Sons,
Inc., New York, 1981, With applications to finite groups and orders, Pure and Applied
Mathematics, A Wiley-Interscience Publication.

[EG19] M. Emerton and T. Gee, Moduli stacks of étale (¢,T')-modules and the existence of
crystalline lifts, arXiv:1908.07185 (August 2019).

88


http://gaetan.chenevier.perso.math.cnrs.fr/articles/lieugalois.pdf
http://gaetan.chenevier.perso.math.cnrs.fr/articles/lieugalois.pdf

REFERENCES

[Gou01] F. Q. Gouvéa, Deformations of Galois representations, in Arithmetic algebraic geometry
(Park City, UT, 1999), volume 9 of IAS/Park City Math. Ser., pages 233-406, Amer.
Math. Soc., Providence, RI, 2001, Appendix 1 by Mark Dickinson, Appendix 2 by Tom
Weston and Appendix 3 by Matthew Emerton.

[Gro60] A. Grothendieck, Eléments de géométrie algébrique. I. Le langage des schémas (rédigés
avec la collaboration de Jean Dieudonné), Inst. Hautes Etudes Sci. Publ. Math. (4), 228
(1960).

[Gro64] A. Grothendieck, Eléments de géométrie algébrique. IV. Etude locale des schémas et des
morphismes de schémas. I (rédigés avec la collaboration de Jean Dieudonné), Inst. Hautes
Etudes Sci. Publ. Math. (20), 259 (1964).

[Gro65] A. Grothendieck, Eléments de géométrie algébrique. IV. Etude locale des schémas et des
morphismes de schémas. II (rédigés avec la collaboration de Jean Dieudonné), Inst. Hautes
Etudes Sci. Publ. Math. (24), 231 (1965).

[Gro66] A. Grothendieck, Eléments de géométrie algébrique. IV. Etude locale des schémas et
des morphismes de schémas. III (rédigés avec la collaboration de Jean Dieudonné), Inst.
Hautes Etudes Sci. Publ. Math. (28), 255 (1966).

[Hoc07] M. Hochster, F-finite rings, Lecture Notes for Math 711 (2007), http://math.lsa.
umich.edu/~hochster/711F07/L09.21.pdf.

[Hocl4] M. Hochster, The Structure Theory of Complete Local Rings, Lecture Notes for Math
615 (2014), http://www.math.lsa.umich.edu/~hochster/615W14/Struct.Compl.pdf.

[Iye20] A. Iyengar, Deformation theory of the trivial modp Galois representation for GL,,, Int.
Math. Res. Not. IMRN (22), 8896-8935 (2020).

[Jan83] U. Jannsen, Uber Galoisgruppen lokaler Kérper, Invent. Math. 70(1), 53-69 (1982/83).

[Kis03] M. Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent.
Math. 153(2), 373-454 (2003).

[Kis09] M. Kisin, Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) 170(3),
10851180 (2009).

[Mat80] H. Matsumura, Commutative algebra, volume 56 of Mathematics Lecture Note Series,
Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980.

[Mat89] H. Matsumura, Commutative ring theory, volume 8 of Cambridge Studies in Advanced
Mathematics, Cambridge University Press, Cambridge, second edition, 1989, Translated
from the Japanese by M. Reid.

[Maz89] B. Mazur, Deforming Galois representations, in Galois groups over Q (Berkeley, CA,
1987), volume 16 of Math. Sci. Res. Inst. Publ., pages 385-437, Springer, New York, 1989.

[Maz97] B. Mazur, An introduction to the deformation theory of Galois representations, in
Modular forms and Fermat’s last theorem (Boston, MA, 1995), pages 243-311, Springer,
New York, 1997.

89


http://math.lsa.umich.edu/~hochster/711F07/L09.21.pdf
http://math.lsa.umich.edu/~hochster/711F07/L09.21.pdf
http://www.math.lsa.umich.edu/~hochster/615W14/Struct.Compl.pdf

REFERENCES

[Mil80] J. S. Milne, Etale cohomology, volume 33 of Princeton Mathematical Series, Princeton
University Press, Princeton, N.J., 1980.

[Mul13] A. Muller, Relévements cristallins de représentations galoisiennes, PhD thesis, Université
de Strasbourg, 2013.

[Nak00] K. Nakamoto, Representation varieties and character varieties, Publ. Res. Inst. Math.
Sci. 36(2), 159-189 (2000).

[Nak14] K. Nakamura, Zariski density of crystalline representations for any p-adic field, J. Math.
Sci. Univ. Tokyo 21(1), 79-127 (2014).

[Nek06] J. Nekovaf, Selmer complexes, Astérisque (310), viii+559 (2006).

[NSWO00] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields, volume 323
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences], Springer-Verlag, Berlin, 2000.

[Pas13] V. Paskinas, The image of Colmez’s Montreal functor, Publ. Math. Inst. Hautes Etudes
Sci. 118, 1-191 (2013).

[Rob63] N. Roby, Lois polynomes et lois formelles en théorie des modules, Ann. Sci. Ecole Norm.
Sup. (3) 80, 213-348 (1963).

[Rob80] N. Roby, Lois polynémes multiplicatives universelles, C. R. Acad. Sci. Paris Sér. A-B
290(19), A869-A871 (1980).

[Sch68] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130, 208-222 (1968).

[Ser72] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent.
Math. 15(4), 259-331 (1972).

[Ser77] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg,
1977, Translated from the second French edition by Leonard L. Scott, Graduate Texts in
Mathematics, Vol. 42.

[Stal8] T. Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2018.

[Tay91] R. Taylor, Galois representations associated to Siegel modular forms of low weight, Duke
Math. J. 63(2), 281-332 (1991).

[Urb99] E. Urban, On residually reducible representations on local rings, J. Algebra 212(2),
738-742 (1999).

[Vac09] F. Vaccarino, Homogeneous multiplicative polynomial laws are determinants, J. Pure
Appl. Algebra 213(7), 1283-1289 (2009).

[WE13] C. Wang Erickson, Moduli of Galois Representations, ProQuest LLC, Ann Arbor, MI,
2013, Thesis (Ph.D.)-Harvard University.

[WE18] C. Wang-Erickson, Algebraic families of Galois representations and potentially semi-stable
pseudodeformation rings, Math. Ann. 371(3-4), 1615-1681 (2018).

90


http://stacks.math.columbia.edu

REFERENCES

[Web16] P. Webb, A course in finite group representation theory, volume 161 of Cambridge
Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2016.

[Wei67] A. Weil, Basic number theory, Die Grundlehren der mathematischen Wissenschaften,
Band 144, Springer-Verlag New York, Inc., New York, 1967.

[Wil95] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141(3),
443-551 (1995).

91



	Introduction
	Acknowledgements

	Clifford Theory
	Generalities
	Some results when p does not divide the index of H in G
	Some results when p divides  the index of H in G

	Deformations of Galois representation
	Basic categories and functors, and formal smoothness
	Mazur's deformation theory and extensions
	Deformation rings at dimension 1 points
	Relative formal smoothness of the determinant functor

	Pseudocharacters and their deformations
	Pseudocharacters
	Universal rings of pseudocharacters
	Generalized matrix algebras
	Continuous pseudocharacters
	Twisting of pseudocharacters
	Induction for pseudocharacters
	Pseudodeformations and their universal rings
	Pseudodeformations over local fields

	Equidimensionality and density of the regular locus
	Special points
	Zariski density of the irreducible locus
	Alternative proof of Theorem 5.2.1
	A dimension bound for the special locus
	Main results

	Appendix. Auxiliary results on rings, algebras and representations
	Commutative Algebra
	Finite dimensional algebras and modules
	Absolutely irreducible mod p representations of the absolute Galois group of a p-adic field
	A variant of a result of Vaccarino

	Bibliography

