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Abstract

Based on comparison theorems for Hecke algebras and universal defor-
mation rings with strong restrictions at the critical prime l, as provided by
the results of Wiles, Taylor, Diamond, et al., we prove under rather general
conditions that the corresponding universal deformation spaces with no re-
strictions at l can be identified with certain Hecke algebras of l-adic modular
forms as conjectured by Gouvêa, thus generalizing previous work of Gouvêa
and Mazur.

Along the way, we show that the universal deformation spaces we con-
sider are complete intersections, flat over Zl of relative dimension three, in
which the modular points form a Zariski dense subset. Furthermore the
fibers above Ql of these spaces are generically smooth.

1 Introduction

When first defining universal deformation spaces for deformations of Galois repre-
sentations in the seminal paper [22] of Mazur, their complete arithmetic meaning
may have been rather obscure. Motivated by the work of Hida, [19], Mazur was
led to expect the density of ordinary modular representations in the universal
ordinary deformation space. Over time however the understanding improved and
at least for odd irreducible two dimensional residual modular representations of
Gal(Q̄/Q) concrete conjectures were made in [14] and [15] by Gouvêa.

In a coarse form, these conjectures predict that the universal deformation
spaces are isomorphic to Hecke algebras of l-adic modular forms. The precise
form will be given below in Conjecture 2.9. Loosely speaking, we will call the
above deformation spaces and Hecke algebras the big ones. As a consequence
of these conjectures, [18], §3, one can reconstruct universal deformation spaces
entirely from the set of modular forms of a given mod l reduction type and a
bound on the prime-to-l conductor.

The first progress on these conjectures was made in [18] by Gouvêa and Mazur,
who proved them under certain smoothness assumptions on the spaces involved.
An essential ingredient was the work of Coleman, [8] on families of overconvergent
modular forms. Based on an observation in [1], we can vastly extend the range in
which the above conjectures are true.
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The new ingredient compared to [18] is the use of the isomorphism theorems
in [29], [28] and [13] between universal deformation rings and Hecke algebras with
strong supplementary conditions at the place l. These rings will be called the small
rings. Under some conditions on the residual representation at l, we will show
that there is an isomorphism of the big rings whenever there is an isomorphism
of the small ones, and this is where the results of [1] come to bear.

The proof proceeds in two stages. First, we use the isomorphism results be-
tween the small rings and the way the small universal rings are obtained from
the big ones, as explained in [1], to derive some consequences on the geometry
of the big universal deformation rings: They are complete intersections and each
component of their associated space contains a smooth point which is modular
(of weight 2 and finite slope) and not contained in any other component. There-
fore the big deformation spaces contain a dense open subspace of characteristic
zero which is formally smooth over Ql. We simply say that the big spaces are
generically smooth. This can be seen as partial confirmation of some conjectures
of Boston, cf. Remark 3.6 and [3].

The second step will be a reexamination of the density proof in [18]. The proof
in loc.cit., with minor modifications, shows in fact the following. Suppose we have
a smooth modular point of finite slope on a component of a big universal space,
and a neighborhood of it which meets no other component. Then the modular
points are Zariski dense in this component.

Combining the preceding two steps, we find that modular points are Zariski
dense in big universal deformation spaces under the assumption that the residual
representation is modular, absolutely irreducible and satisfies certain conditions at
l. As the big spaces are generically smooth, it easily follows that the big universal
rings are isomorphic to their corresponding Hecke algebra.

It should certainly be investigated if or under what circumstances the ideas of
this article generalize to situations where either %̄ is reducible, or %̄ is an irreducible
representation of the absolute Galois group of a totally real field and attached to
a Hilbert modular form.

Acknowledgements: For several helpful comments, explanations and cor-
rections, I would like to thank N. Boston, K. Buzzard, R. Coleman, B. Conrad, F.
Diamond, F. Gouvêa and B. Mazur. During the preparation of this paper, the au-
thor received financial support through a Habilitationsstipendium of the Deutsche
Forschungsgemeinschaft and the hospitality of the Department of Mathematics at
Harvard University. My thanks to both institutions.

Many thanks also to the referees for their careful reading and various suggested
improvements. Through one of them I also learned that some results on Gouvêa’s
conjecture have been obtained independently by A. Yamagami, [30].

2 Deformation rings and Hecke algebras

In this section, we fix the type of residual representation we want work with. This
is followed by a brief discussion on ordinariness. We then introduce various de-
formation rings and corresponding Hecke algebras. In the end, we state Gouvéa’s
conjecture.

Let l ∈ N be an odd prime and Fl the field of l elements. For an arbitrary field
K, by K̄ we denote its separable closure. We abbreviate Gal(K̄/K) by GK . Let
S ⊃ {l,∞} be a finite set of places of Q, and denote by GQ,S the Galois group of
the maximal subextension of Q̄ which is unramfied outside S. For every rational
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prime p we choose a place of Q̄ above it. This provides us with an embedding
Q̄ → Q̄p and a corresponding map GQp → GQ. The image of the latter map is
denote by Dp, and its inertia subgroup by Ip. Let χ : GQ → Z∗l be the cyclotomic
character, χ̄ its reduction mod l, and ω the Teichmüller lift of χ̄. By χp, χ̄p, ωp

we denote the respective restrictions to Dp.

The residual representation

We start by specifying a residual representation. Fix an odd continuous Galois
representation %̄′ : GQ → GL2(F̄l). (We will shortly introduce %̄ which is the
simplest twist of %̄′ by a character; so the use of %̄′ is only temporarily.) By
continuity, the fixed field of the kernel of %̄′ is a finite extension of Q, and thus
%̄′ is ramified at only finitely many places. By Ram(%̄′) we denote the set of
such. The underlying two-dimensional representation space is denoted by W̄ ′.
The restriction of %̄′ to Dp for any rational prime p is denoted by %̄′p.

Assumption 2.1 Throughout, we require that %̄′ satisfy the following conditions:

(i) %̄′ restricted to GQ
“√

(−1)(l−1)/2l

” is irreducible.

(ii) %̄′ is modular in the sense that it arises from a modular form, cf. [27].

Furthermore, we require %̄′l to satisfy either of the following two conditions.

(iii) %̄′l is reducible, but the image of its semisimiplification is not in the center
of GL2(F̄l).

(iv) There exists a character νl of GQl
such that %̄′l ⊗ νl is irreducible and flat in

the sense of [29], p. 456.

If %̄′l is as in (iii), we can write %̄′l =
(

χ̄1,l ∗
0 χ̄2,l

)
with respect to a suitable basis.

If l = 3, or if %̄′l is not semi-simple, we fix any such basis. If %̄′l is semi-simple
and l 6= 3, we choose a basis such that χ̄−1

1,l χ̄2,l 6= χ̄l. This basis will be fixed
throughout the article and based on it, we define the adjoint character of %̄′l to
be µ̄′l := χ̄−1

1,l χ̄2,l. So really, the adjoint character may depend on our choice of
basis and not just on %̄′. Our special choice of basis in the semi-simple case will
is needed to have Theorem 3.1 at our disposal.

For the deformation theory to be developed below, we want to work with a
residual representation which takes its values in GL2(k) for a finite extension k
of Fl. Since %̄′ and νl have finite image we can clearly assume this. By possibly
passing to the unique quadratic extension of k, we will furthermore assume that
any semisimple element in the image of %̄′ can be diagonalized over k.

By W (k) we denote the ring of Witt vectors over k, by K some finite extension
of the fraction field of W (k) and by O its ring of integers. By | . | we denote the
norm on K such that |l| = 1/l, and by v( . ) the corresponding valuation. We
extend both of them to Q̄l via a fixed embedding K ↪→ Q̄l.

Ordinariness

An important condition on two-dimensional Galois representation is ordinariness.
There are two reasons why we include a brief discussion on this. First, the con-
jectural isomorphism between big universal rings and big Hecke algebras made in
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[15] involves the notion of p-ordinariness for primes p different from l. Second,
the definition of ordinariness is not uniform in our references.

We let A be a complete noetherian local ring with maximal ideal m and residue
field k and fix a continuous Galois representation % : GQ → GL2(A). We write
W for the underlying free A-module of rank two. For a subgroup H of GQ, we
denote by WH the covariants and by WH the invariants of W with respect to H.

Definition 2.2 For p any rational prime, we say that % is p-ordinary if WIp is
free of rank one over A. It is p-co-ordinary if W/W Ip is free of rank one over A
and if the same holds for the reduction of W modulo m.

Suppose that Im %p is not in the center of GL2(A). We say that % is weakly
p-ordinary (respectively weakly p-co-ordinary) if with respect to a suitable A-basis
of W one has

%|Dp
=

(
χ1,p ∗

0 χ2,p

)
where χi,p : Dp → A are continuous characters and χ2,p (respectively χ1,p) is
unramified.

Remark 2.3 Clearly, if % is p-ordinary (p-co-ordinary), it is weakly p-ordinary
(weakly p-co-ordinary). What we call weakly l-ordinary is called ordinary in [29],
p. 456.

Compared to [23] and [15] the notions of ordinariness and co-ordinariness are
interchanged. To be precise, in those two references % is called p-ordinary if and
only if W/W Ip is a free A module of rank one. In all cases where we quote from
[15], it is assumed that %(mod m) has the respective property too. No confusion
should arise.

The following lemma clarifies the relation between the above two notions.

Lemma 2.4 (a) A representation % is p-ordinary if and only if %(det %)−1 is
p-co-ordinary. The same holds for the corresponding weak notions.

(b) Suppose p is a prime different from l, then % is p-ordinary if and only if it
is p-co-ordinary.

Proof: Part (a) is left as an exercise to the reader. We now prove part (b) and
assume that % is p-ordinary. Thus with respect to a suitable basis of W , one can
write

%|Ip
=

(
a b
0 1

)
,

with continuous functions a, b : Ip → A. From the continuity of % and the structure
of GL2(A), it follows immediately that %(Ip) is the extension of a finite cyclic group
L′ of order prime-to-l by a pro-l group L.

It is also well-known that Ip is the extension of a pro-cyclic group of order
prime-to-p by a pro-p group. Therefore, %(Ip), too, is the extension of a pro-
cyclic group P ′ of order prime-to-p by a pro-p group P . As p is different from
l, the induced map %(Ip) → P ′ × L′ has trivial kernel, which shows that %(Ip) is
abelian. This implies that L is a quotient of P ′, and hence of Zl. We obtain that
%(Ip) ∼= L× L′ is topologically generated by a single element, say g0 =

(
a0 b0
0 1

)
.

As WIp is free of rank one over A the subspace (g0 − id)W of W contains

the vector
(

1
0

)
. Thus there exist v1, v2 ∈ A such that (a0 − 1)v1 + b0v2 = 1.
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Performing a base change with the matrix h :=
(
−v1 b0
−v2 1−a0

)
yields h−1g0h =(

a0 0
−v2 1

)
. A short calculation shows that W Ip is free over A of rank one and a

direct summand of W , and the same for W (mod m). Hence % is p-co-ordinary.
We now turn to the converse. Arguing as above, the p-co-ordinariness of %

implies that %(Ip) is topologically generated by one generator, which we call g1.

We chose a basis such that g1 =
(

a1 0
c1 1

)
. Our hypothesis that %(mod m) is p-co-

ordinary, implies that one of a1 − 1 and c1 is a unit in A. Therefore there exist
w1, w2 in A such that w1(a1 − 1) +w2c1 = 1. This allows one to revert the above
argument and to show that % is p-ordinary.

As indicated above, we may have to replace %̄′ by a twist which is simpler in
certain ways. To do so, we first define local characters ψ′p at all primes p.

(a) If p 6= l and %̄′p is irreducible or unramified, we let ψ′p be trivial.

(b) If %̄′p is reducible and ramified, we choose ψ′p such that (W̄ ′ ⊗ ψ′p)
Ip 6= 0.

(c) If p = l and %̄′l is irreducible, we set ψ′l := ν−1
l — recall that νl is a character

of GQl
such that %′l ⊗ νl is flat.

Now we define the character ψ : GQ → k∗ to be the unique character such that
for all primes p, the local characters ψp and ψ′p agree when restricted to Ip. We
let %̄ := %̄′ ⊗ ψ. In particular this means that %̄ is p-ordinary or unramified at all
primes p where %̄′p is ramified and reducible. Note that Assumption 2.1 continues
to hold for %̄. Also, if %̄′l is reducible, then %̄l is weakly l-ordinary and has adjoint
character µ̄l = µ̄′l.

Universal deformation rings

We let Σ be a finite set of places of Q which contains l, ∞ and all the primes p
at which %̄p is ramified but not p-ordinary. We define S := Σ ∪ Ram(%̄). Thus at
all p ∈ S\Σ the representation %̄ is p-ordinary. Depending on the set Σ, we define
various deformation rings for %̄ and O as above. For generalities on universal
deformation rings and their properties, we refer to [22], or [7]. We also choose Σ′

for %̄′, and define S′ analogously. At this point there is no relation between Σ′

and Σ.
By RO,Σ we denote the universal deformation ring for deformations of %̄ to

complete noetherian local O-algebras, unramified outside S which are p-ordinary
at all primes p of S\Σ. The definition of being p-ordinary is clearly invariant
under conjugation and hence a well-defined condition on deformations of Galois
representations, cf. [22]. Using %̄′, S′,Σ′ instead, we define the ring R′

O,Σ′ .
The quotient of RO,Σ which classifies deformations [%] of %̄ such that det % is of

finite order prime to l at any prime p different from l is denoted by Rl
O,Σ. (Note

that det % is independent of the chosen representative of [%].) Finally, by Rs
O,Σ we

denote the quotient of Rl
O,Σ which parameterizes deformations that satisfy the

following conditions at l, cf. [29], pp. 456–457:

(a) The order of (det %l)χ−1
l is finite and prime to l.

(b) In case (iii), %l is weakly l-ordinary, in case (iv), %l is a flat deformation.
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We set XΣ := Spec(RO,Σ), X ′
Σ′ := Spec(R′

O,Σ′) and X l
Σ := Spec(Rl

O,Σ) to
denote the corresponding spaces.

Remark 2.5 There are several comments in order to motivate the definitions of
the above deformation rings.

(a) The ring RO,Σ (respectively R′
O,Σ′) we want to identify with an l-adic

Hecke algebra of l-adic modular forms as constructed in [14]. In loc.cit. this ring
is denoted by R(%̄, S, S\Σ).

(b) The ring Rl
O,Σ is linked to Rs

O,Σ by imposing conditions solely at the
prime l, see Theorem 4.1 below.

(c) The ring Rs
O,Σ is isomorphic to the ring RD of [29], p. 458, where in case

(iii) we have D = (Se, S,O,Σ), and in case (iv) we have D = (flat, S,O,Σ). By
the results in [29, 28, 13], it is directly related to Hecke algebras over O of certain
weight two cuspidal eigenforms, cf. Theorem 2.8 below.

(d) Finally the choice of O is completely at our disposition due to the following
result from [7], Appendix A.1: Under a change of rings O → O′, the corresponding
change of universal deformation rings is given by RO′,Σ

∼= O′ ⊗O RO,Σ, and
similarly for the other rings we defined.

We formulate the following proposition, which explains the relation between
Rl
O,Σ and RO,Σ.

Proposition 2.6 Let ΓΣ be the maximal abelian pro-l quotient of GQ,Σ\{l}. Then
the following hold:

(a) The group ΓΣ is finite and the ring O[ΓΣ] is isomorphic to the universal de-
formation ring of one-dimensional deformations of the trivial representation
unramified outside Σ\{l}.

(b) Let δ be a deformation of the trivial one-dimensional representation and [%]
a deformation of %̄ whose determinant is of order prime to l away from l.
The map on deformations (δ, [%]) 7→ [%⊗ δ] induces an isomorphism

O[ΓΣ]⊗O Rl
O,Σ → RO,Σ .

Proof: Part (a) is from [22]. To construct an inverse of the map in (b), one
needs 2 6= l (more precisely 2 ∈ Z∗l ). We leave the details to the reader.

Hecke algebras

Since %̄ is modular, a main source of deformations are Galois representations
which arise from cuspidal eigenforms. Given a newform of level N which is a
cuspidal eigenform, by results of Eichler, Shimura, Deligne and Deligne-Serre
there is attached an l-adic Galois representation %f : GQ → GL2(Kf ) which is
unramified at primes not dividing lN and where Kf is a suitable finite extension
of Ql, [10, 11]. With respect to a suitable basis, %f takes its values in GL2(Of ),
where Of is the ring of integers of Kf . The condition that %f is a lift of %̄, can
be expressed in terms of congruences for the Hecke eigenvalues of f modulo the
maximal ideal of Of . To single out the part of the Hecke algebra of the set of all
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modular forms of a given level and weight, which satisfy this congruence condition,
one takes the completion at the corresponding maximal ideal.

The ramification behavior of %f finds its expression in the conductor N(%f ) of
%f , cf. [15], § 3 for a definition. On the one hand one can directly compare the
conductor of %̄ and of a deformation, loc. cit., Prop. 6. On the other hand, one
has the following important result of Carayol linking N and N(%f ), [5]:

Theorem 2.7 Let f be a cuspidal eigenform of prime-to-l level N . Then N(%f )
divides N with equality precisely when f is a newform away from l.

Following Gouvêa, [15], it is natural to restrict the prime-to-l ramification of
%f by bounding the conductor N(%f ), or equivalently by bounding the prime-to-l
level N of f . Given Σ, we specify a prime-to-l conductor NΣ :=

∏
p6=l p

nΣ(p),
where, for each prime p different from l, the following defines nΣ(p) ∈ N0:

(a) If %̄p is unramified, then we let nΣ(p) be 2, if p ∈ Σ, and 0 otherwise.

(b) If %̄ is p-ordinary, and p ∈ Σ, then nΣ(p) := n(%̄, p) + 1.

(c) If %̄ is p-ordinary, and p /∈ Σ, then nΣ(p) := n(%̄, p).

(d) If %̄ is ramified at p but not p-ordinary, then nΣ(p) := n(%̄, p).

See also [7], Sect. 5.1. Analogously, we define NΣ′ for %̄′ and Σ′. We now define
various Hecke algebras depending on Σ.

By T O,Σ we denote the Hecke algebra of l-adic modular forms over O of
prime-to-l conductor NΣ, completed at the maximal ideal corresponding to %̄. We
refer to [15] and [14] for more details. Note that one only considers the Hecke
operators Tp for p 6 | lNΣ and the Diamond operators 〈d〉 for (d, lNΣ) = 1, cf. [14],
Thm. III.5.6. By T l

O,Σ we denote the quotient of T O,Σ corresponding to l-adic
modular forms whose nebentype character away from l is of order prime to l. The
definition of T ′O,Σ′ is analogous.

In loc.cit., a deformation of %̄ to T O,Σ is constructed by patching the Galois
representations associated to classical cuspidal eigenforms. To make the patching
work, the restriction l ≥ 7 was made. But using the results of [6], due to Carayol
and Serre, instead of [14], Thm. II.5.5, it suffices to assume l > 2, cf. [9], Sect. 5.
Thus one obtains an induced map ΦΣ : RO,Σ → T O,Σ. By its construction, T O,Σ is
generated by the traces of the Frobenii of the corresponding Galois representation.
Therefore the map ΦΣ is surjective. Similarly one has induced surjective maps
Φl

Σ : Rl
O,Σ → T l

O,Σ and Φ′Σ′ : R′
O,Σ′ → T ′O,Σ′ .

Finally, let O be a discrete valuation ring which is a finite, totally ramified
extension of W (k) and which contains all eigenvalues for the Hecke operators Tn,
n prime to lNΣ, acting on the space of newforms of weight two and level dividing
lNΣ whose associated mod l representation is isomorphic to %̄. Let T denote the
Hecke algebra over O on these forms, completed at its maximal ideal. In the case
with strong supplementary conditions at l, a Hecke algebra T D was defined in
[29], where D is as in Remark 2.5(c). We write T s

O,Σ for this Hecke algebra. It
is a quotient of T, and finite flat over O. As above, there arises a surjective ring
homomorphism Φs

Σ : Rs
O,Σ → T s

O,Σ.
The following identification between universal deformation rings and Hecke

algebras was obtained as the central result in [29], [28] and [13].

Theorem 2.8 Let O be as in the previous paragraph. Then Φs
Σ is an isomorphism

between reduced complete intersection rings which are finite flat over O. The
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localization of T s
O,Σ at any minimal prime is isomorphic to the fraction field of

O.

Proof: The isomorphism statement in this form is [13], Theorem 1.1. The other
parts are immediate from the construction of O and T s

O,Σ.

Concerning the comparison of ‘big’ universal deformation rings and ‘big’ Hecke
algebras, the following was conjectured in [15], p. 108.

Conjecture 2.9 For any Σ, Σ′ the maps Φl
Σ, ΦΣ and Φ′Σ′ are isomorphisms.

In the case that %̄ is modular, absolutely irreducible, unobstructed and attached
to a modular form for Γ0(p) of non-critical slope for l, the proof of the above
conjecture for ΦΣ is one of the main results of [18].

3 Main results

For the remainder of this article, we assume that %̄′ satisfies the conditions given
in Assumption 2.1 and that %̄ is its twist by ψ. In this section, we present our
central results on the structure of big universal deformation spaces and the density
of modular points in these spaces. The proofs will be given in Section 4 and 5,
respectively. We also derive an isomorphism theorem for big universal deformation
spaces and big Hecke algebras.

On the geometry of big universal deformation spaces

Theorem 3.1 If %̄ is weakly l-ordinary, we assume that µ̄l 6= χ̄l. Then Rl
O,Σ is

a complete intersection ring of dimension four. Furthermore, there exists a finite
flat map β : A := O[[x1, x2, x3]] → Rl

O,Σ such that one has an isomorphism

Rl
O,Σ /(β(x1), β(x2), β(x3)) ∼= Rs

O,Σ .

Corollary 3.2 Under the assumptions of the above theorem, the space X l
Σ is

equidimensional and has no embedded components.

Proof: Because any local complete intersection ring is Cohen-Macaulay, [21],
p. 171, by the above theorem the ring R := Rl

O,Σ has this property. By [21],
Thms. 17.4 and 17.6, it follows that the height of any associated prime p of R
is zero. So in particular, R has no embedded primes. Loc. cit. also implies that
dimR = dimR/p + height p for any prime p of R. Thus dimR = dimR/p for all
primes of height zero, and hence X l

Σ is equidimensional.

Definition 3.3 A point P on XΣ (or X ′
Σ′) is called modular if there exists a

cuspidal eigenform f such that

(a) with respect to a suitable basis %f : GQ → GL2(Of ) and %̄f = %̄, and

(b) P is the kernel of the map RO,Σ → Of (respectively R′
O,Σ′ → Of ) corre-

sponding to the deformation [%f ].
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By Li we denote the fields that arise when localizing T s
O,Σ at minimal primes.

(By our choice of O, the Li are isomorphic to the fraction field of O.) The induced
maps Rl

O,Σ → Li are denoted πi, and the resulting points on X l
Σ by Pi. From the

definition of T s
O,Σ and the construction of Φs

Σ, it follows that the Pi are modular
points attached to an eigenform of l-level dividing l. With these notations in
place, we can formulate the next important result on deformation spaces. Note
that the word dense always means Zariski dense in this article.

Theorem 3.4 Again we assume that µ̄l 6= χ̄l in the case where %̄ is weakly l-
ordinary. Let {Xj : j = 1, . . . , c} be the set of irreducible components of X l

Σ.
Then

(a) There exists a dense open subset V of X l
Σ containing all the Pi which is

formally smooth over SpecO.

(b) For each j the set Xj ∩ V is dense in Xj.

(c) Each Xj contains one of the points Pi.

Analogous results hold for XΣ and X ′
Σ′ .

The key observation of the proof is the realization that the Pi are regular points
on X l

Σ. This can be seen as follows: By πi we denoted the maps R := Rl
O,Σ → Li.

Let Pi be the kernel of πi and look at RPi . This is a local ring of dimension three
with residue field Li, and if we mod out by the three elements r1, r2, r3, the result
is Li. Therefore these three must span Pi/(Pi)2 which implies that the ring is
regular. Having said all this, we postpone the proof to Section 4.

Corollary 3.5 Under the assumption of the above theorem, the spaces XΣ, X l
Σ

and X ′
Σ′ are reduced.

Proof: We only give the proof for X l
Σ. For the other two cases, we refer the

reader to the proof of Corollary 3.8 below, where the general principle is exposed.
For simplicity, we write R for the coordinate ring of X l

Σ.
Using the previous theorem, we choose for each component Xj of SpecR a

smooth modular point Pj on it which meets no other component. Choose functions
fj ∈ R that are zero on the components different from Xj , non-zero at Pj and such
that SpecRfj is smooth over Ql. One easily checks that f :=

∑
fj is a non-zero

divisor, and therefore that R ↪→ Rf is an inclusion. Since SpecRf = qSpecRfj

is smooth, the ring Rf contains no nilpotent elements, and hence neither its
subring R.

Remark 3.6 (a) The above results on big universal deformation spaces can be
seen as a partial confirmation of some conjectures by Boston on the geometry of
universal deformation spaces, [3]. Among other things they predict that XΣ is a
union of smooth four-dimensional components.

Our results are weaker than this. All irreducible components are reduced,
generically smooth and of dimension four, they contain no embedded components
and they are all flat over W (k). On the other hand, maybe it is too much to
hope for global smoothness, as there are examples of local non-smooth universal
deformation rings, cf. [1], Thm. 6.2.



10 Gebhard Böckle

(b) Define cΣ to be the number of components ofX l
Σ, and dΣ := dimK T s

O,Σ⊗O
K. (The former number is rather mysterious, while the latter can be computed
explicitly.) By Theorem 3.4 one has cΣ ≤ dΣ. Furthermore it is not difficult to
see that cΣ has to increase, i.e., that XΣ has to ‘grow’ new components, whenever
dΣ increases. This raises the following question: Is the quotient dΣ/cΣ invariant
under Σ, and if the answer is in the affirmative, what is its arithmetic significance?

On the density of modular points

Our main result here is the following, which will be proved in Section 5.

Theorem 3.7 Suppose %̄′ satisfies the conditions of Assumption 2.1. Further-
more, if %̄′l is reducible, assume that µ̄l 6= χ̄l. Then for any Σ, the set of modular
points on X l

Σ whose prime-to-l conductor divides NΣ is Zariski dense.

Corollary 3.8 Under the above hypotheses, for any set Σ (Σ′), the set of modular
points of prime-to-l conductor dividing NΣ (dividing NΣ′) is Zariski dense in XΣ

(respectively X ′
Σ′).

Proof: We first prove the density of modular points in XΣ. Recall that the
relation between Spec(Rl

O,Σ) and Spec(RO,Σ) is described by Proposition 2.6.
Any closed point of Spec(RO,Σ) can be obtained from a closed point of Spec(Rl

O,Σ)
by twisting it with a character of ΓΣ. We can twist modular forms by the same
character, as the characters of ΓΣ are of finite order. By [15], Prop. 6, the prime-
to-l conductor of the twist is still bounded by NΣ, and the density assertion for
XΣ follows from that of X l

Σ.
We now turn to the case X ′

Σ′ where we are given Σ′. Define Σ as the union
of Σ′ with all the primes p at which ψ′p is non-trivial. Let ψ̃ : GQ → W (k)∗ be
the Teichmüller lift of ψ where %̄ = %̄′ ⊗ ψ. This is a character of finite order,
and ‘twisting by ψ̃−1’ induces an isomorphism from RO,Σ to R′

O,Σ′ . As above
one can twist modular forms by the same character. The definitions imply that
NΣ = NΣ′ , and the assertion for X ′

Σ′ follows from that of XΣ.

The main consequence of the above theorem is the following comparison the-
orem of big universal deformation rings and big Hecke algebras.

Theorem 3.9 Under the assumptions of Theorem 3.7, for any Σ,Σ′, the maps
Φ′Σ′ , ΦΣ and Φl

Σ, defined above Theorem 2.8, are isomorphisms. In other words,
Conjecture 2.9 is verified in all these cases.

Proof: The proof is only given for X l
Σ. The generalizations to XΣ and X ′

Σ′ are
obvious and left to the reader.

The scheme Spec(T l
O,Σ) contains all modular points with prime-to-l level di-

viding NΣ and character prime to l away from l. By Corollary 3.8, the closed
subscheme Spec(T l

O,Σ) is dense in X l
Σ under the map induced by Φl

Σ. Density
means that the kernel of the surjective map Φl

Σ : Rl
O,Σ

// // T l
O,Σ is nilpotent. By

Corollary 3.5, the ring Rl
O,Σ is reduced, and so ker(Φl

Σ) = 0 as asserted.
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Remark 3.10 We now discuss a possible approach to obtain the above results
under conditions more general than those of Assumption 2.1:

The theory of types, [7], §1, and recent results in [4], suggest to study the
following program for any modular residual representation %̄′:

(a) Determine the ‘simplest’ type τ such that a twist %̄l of %̄′l arises as the mod
l reduction of a modular representation %f of type τ .

(b) Determine the local universal deformation ring Rτ
l for deformations of %̄l of

type τ (and fixed determinant) as in [4].

(c) Prove a comparison theorem between small universal deformation rings and
small Hecke algebras as in [7], where at l on imposes the condition that the
deformations are of type τ .

Suppose this has been carried out successfully, and suppose Rτ
l is a complete

intersection, flat over O of relative dimension one. It is then easy to adapt the
arguments in Sections 4 and 5 to obtain all results of this section also for %̄. (The
properties of Rτ

l are needed to prove the analogue of Lemma 4.2 for %̄, and (c)
has to be used instead of Theorem 2.8.)

Using results from [7] and [4], it is indeed possible to work out the above
program for certain %̄ which do not necessarily satisfy all of the conditions of
Assumption 2.1. (One can do this for any %̄ which is the reduction modulo λ of
%π,λ as in [7], Cor. B.4.3, provided that the field F of loc. cit. has ramification
degree at most l − 1.) It will be interesting to further investigate the questions
raised by the above program.

4 On the big universal deformation spaces

We start our investigation of X l
Σ with the following theorem, which is a conse-

quence of the results in [1]. It is the crucial link between the small and the big
universal deformation rings.

Theorem 4.1 Let O be the ring of integers of any finite totally ramified extension
of the fraction field of W (k). If %̄ is weakly l-ordinary, we assume that its adjoint
character µ̄l is different from χ̄l. Then the universal rings RO,Σ and Rl

O,Σ are
complete intersections, flat over O and of relative dimension three.

If furthermore O is as in Theorem 2.8, then the kernel of the surjection
Rl
O,Σ → Rs

O,Σ /(l) is generated by a regular sequence r1, r2, r3, l of Rl
O,Σ.

Proof: As this is not exactly what is proved in [1], we sketch a proof. To prove
the assertions on Rl

O,Σ, we introduce yet another universal deformation ring. Let
η : GQ,S → W (k)∗ be the product of the Teichmüller lift of det %̄χ̄−1 and of χ.
Let Rη

O,Σ denote the quotient of RO,Σ which parametrizes lifts of determinant η.
As all deformations parametrized by Rs

O,Σ have determinant η, this ring must be
a quotient of Rη

O,Σ.

Lemma 4.2 The kernel of λ : Rη
O,Σ

// // Rs
O,Σ is generated by at most two ele-

ments, called r1, r2.



12 Gebhard Böckle

Proof: The deformation theoretic conditions that describe the map λ are purely
local at the prime l. Let ηl denote the local component of the character η at l.
Denote by Rl the versal deformation ring of deformations of %̄l : Dl → GL2(k)
whose determinant is given by ηl.

We first discuss the case where %̄ is weakly l-ordinary. Define Rord
l as the

quotient ofRl which parametrizes weakly l-ordinary deformations (of determinant
ηl). Let %̃ := %̄(det %̄)−1. By Lemma 2.4(a), it is weakly l-co-ordinary. The rings
R̃l and R̃co−ord

l will denote the versal rings for deformations and weakly l-co-
ordinary deformations of %̃l, respectively, where in both cases it is assumed that
the determinant be η−1

l . By Lemma 2.4(a), there is a commutative diagram

Rl

∼=
��

// // Rord
l

∼=
��

R̃l
// // R̃co−ord

l

where the vertical maps are isomorphisms. If %̃l is l-co-ordinary, it is shown in
[1], Cor. 7.4 and Thm. 8.1, that the kernel of R̃l

// //R̃co−ord
l is generated by two

elements, provided that µ̄l 6= χ̄l. The argument of loc.cit. applies to weakly l-co-
ordinary deformations as well. Thus if µ̄l 6= χ̄l, the above diagram shows that
there exist two elements, say r1, r2, which generate the kernel of Rl

// //Rord
l .

In the flat case, it was shown in [26], that the local flat deformation ring is
isomorphic to O[[X]], while Rl is isomorphic to O[[X1, X2, X3]]. Thus again, the
kernel of the corresponding surjection is generated by two elements, which we call
r1, r2 as above. To unify the notation, we write in either cases Rs

l for the quotient
Rl /(r1, r2).

By the defining properties of Rl, Rs
l , R

η
O,Σ and Rs

O,Σ, there is a push-out
diagram

Rl

��

// Rη
O,Σ

λ
��

Rs
l

// Rs
O,Σ.

This shows that the kernel of λ is generated by the images of r1, r2 under Rl →
Rη
O,Σ, and thus the proof of the lemma is complete.

Reducing modulo l the above lemma yields that

Rη
O,Σ /(r1, r2, l) ∼= Rs

O,Σ /(l).

We now need the following result from obstruction theory whose proof will be
given below. (Note that the gi in the lemma below are allowed to be analytically
dependent or even zero.)

Lemma 4.3 There exists a positive integer n and elements g1, . . . , gn−2 in the
ring R := O[[X1, . . . , Xn]] such that R/(g1, . . . , gn−2) ∼= Rη

O,Σ.

By enlarging O if necessary, we assume that O is as in Theorem 2.8. This
is compatible with the assertions made in Theorem 4.1, cf. Remark 2.5 (d). We
conclude by Theorem 2.8, that Rs

O,Σ /(l) is a finite k-algebra. This point crucially
uses the modularity of %̄.

Using the presentation given in Lemma 4.3, we find that R/(g1, . . . , gn−2, r1, r2, l)
is finite. This shows that the elements g1, . . . , gn−2, r1, r2, l must form a regular
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sequence in the regular local ring R. In particular, the elements r1, r2, l form a
regular sequence in the complete intersection ring Rη

O,Σ. Hence Rη
O,Σ is flat over

O and of relative dimension two.
As in Proposition 2.6, one shows that Rl

O,Σ
∼= O[[Γ]]⊗̂ORη

O,Σ, where Γ ∼= Zl

is the Galois group of the cyclotomic Zl-extension of Q. As O[[Γ]] ∼= O[[x]] for
some indeterminate x, we have proved that Rl

O,Σ is a complete intersection, flat
over O, of relative dimension three. Furthermore Rs

O,Σ /(l) ∼= Rl
O,Σ /(r1, r2, x, l),

so that all assertions on Rl
O,Σ are shown.

The assertion on RO,Σ follows from Proposition 2.6 upon noting that the ring
O[ΓΣ] is a complete intersection, finite flat over O.

Proof of Lemma 4.3: Let Rp denote the versal ring representing deformations
of %p : Dp → GL2(k) which have fixed determinant ηp and are

(a) unramified, if p is not in S,

(b) ordinary (at p), if p is in S\Σ,

(c) arbitrary, if p is in Σ.

Define Lp as the dual of the tangent space of Rp, viewed as a subspace of
H1(Dp, ad0

%̄). The collection L of the Lp is the local set of deformation condi-
tions corresponding to Rη

O,Σ, cf. [2], Def. 4.2, or [12]. Furthermore for p any
prime and i ∈ N0, we set hi

p := dimk H
i(Dp, ad0

%̄). For p ∈ Σ, it is well-known
that h1

p = dimLp, e.g. [22].
By [2], Cor. 6.4, or [12], Thm 2.39, there exists an optimal set of auxiliary

primes Saux for L. Therefore, a presentation of Rη
O,Σ as a quotient of a ring

O[[X1, . . . , Xn]] is given by [2], Thm. 5.6. Let I denote the corresponding kernel.
The number n can be computed from [2], Lemma 5.5, as

n = −dimH0(D∞, ad0
%̄) +

∑
p∈(S∪Saux)\{∞}

(dimLp − h0
p),

because ad0
%̄ and its Tate dual have trivial invariants. By [2], Lemma 5.5, or [12],

Thm. 2.13, this expression can be rewritten as

n = 2 +
∑

p∈Saux∪Σ

h2
p +

∑
p∈S\Σ

(dimLp − h0
p).

From the proof of [2], Thm. 3.8, or by direct computation, one can show that for
any p ∈ S\Σ one has dimLp = h1

p−h2
p = h0

p. We find that n = 2+
∑

p∈Saux∪Σ h
2
p.

The presentation in [2], Thm. 5.6, also gives an estimate on the minimal num-
ber m of generators of I. It is bounded by the sum of the number of relations
needed in a presentation of the Rp for p ∈ (S ∪ Saux)\{∞}. For p a prime in
Saux ∪ Σ, the ring Rp has a presentation with h2

p relations, cf. [2], Thm. 3.8. For
p in S\Σ, no relations are needed, as the corresponding local rings are smooth.
Thus m ≤

∑
p∈Saux∪Σ h

2
p, and the lemma is shown.
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Theorem 3.1 is now an immediate consequence of Theorem 4.1 and the follow-
ing lemma:

Lemma 4.4 Suppose R is a complete noetherian local O-algebra of dimension
m+ 1. Then elements f1, . . . , fm, l ∈ R form a regular sequence if and only if the
induced map

β : A := O[[x1, . . . , xm]] → R : xi 7→ fi

is finite flat.

Proof: This is a simple application of the Koszul complex. By [21], Thm. 22.3
(a)⇔(c), the ring R is flat over A if and only if TorA

i (R, k) = 0 for all i > 0.
Furthermore by [21], Thm. 16.5, the sequence f1, . . . , fm, l is regular in the ring
R, if and only if the corresponding Koszul complex K•({f1, . . . , fm, l}, R), cf. [21],
p.127, has vanishing homology in all positive degrees.

The Koszul complex K•({x1, . . . , xm, l}, A) is a resolution of k. (By the quoted
result above, it is exact in positive degrees. In degree zero the homology can easily
be identified with k.) Thus for any any A-module M one can compute TorA

i (M,k)
by tensoring this complex with M and taking homology. We apply this to R. The
definitions of the Koszul complex and of β imply that

K•({x1, . . . , xm, l}, A)⊗A R ∼= K•({f1, . . . , fm, l}, R),

and hence Hi(K•({f1, . . . , fm, l}, R)) ∼= TorA
i (R, k).

It only remains to verify the finiteness assertion on β. If the sequence f1, . . . , fm, l
is regular, then the quotient R/(f1, . . . , fm, l) is of dimension zero and a k-algebra.
Hence it has a finite basis over k, and by Nakayama’s lemma R is finite over A.

Our next aim is to prove Theorem 3.4. Using the sequence r1, r2, r3, l defined
above, we obtain the following diagram:

A := O[[r1, r2, r3]]
β //

πA

��

Rl
O,Σ

πR

��
O

βs
// Rs

O,Σ ,

where πA and πR are the quotients maps modulo (r1, r2, r3). Let b : X l
Σ → SpecA

be the map on spectra corresponding to β. Let ΩRl
O,Σ /A denote the sheaf of

differentials of Rl
O,Σ over A, and let M := b∗ΩRl

O,Σ /A, i.e. ΩRl
O,Σ /A regarded as

an A-module. As A→ Rl
O,Σ is finite, M is a finite A-module. By [25], Prop. 3.5

(a)⇔(b), the points t ∈ SpecA at which M vanishes are precisely those points at
which the map A→ Rl

O,Σ is unramified.

Lemma 4.5 The map b : X l
Σ → SpecA is unramified at all points above the point

πA ∈ Hom(SpecO,SpecA), and so in particular, πA is not in the support of M .
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Proof: We need to show that b is unramified at all the points Pi. As b is of finite
type, one can directly verify the definition for being unramified as given in [25],
p. 21. For this, one has to show that the localization of Rs

O,Σ at any minimal
prime is a finite separable field extensions of the fraction field of O. This follows
from Theorem 2.8.

Proof of Theorem 3.4: Let U ⊂ SpecA be the complement of the support of M ,
define V := b−1(U) and consider

Spec(Rs
O,Σ) πR //

��

V //

b|V

��

X l
Σ

b

��
SpecO πA // U // SpecA.

As M is finitely generated, the set U is open in SpecA. By the previous lemma,
it contains the points πA so that it is non-empty. By the definition of M , the
restriction b|V of b to V is unramified, and by the construction of V it is also
finite flat. Therefore, [25], p. 22, the map b|V is a finite étale cover of U , and in
particular smooth. Therefore its composition with the formally smooth map πA

is formally smooth, i.e., V is formally smooth over SpecO.
As b is finite and SpecA\U has dimension at most three in SpecA, the set

X l
Σ\V has dimension at most three. By Corollary 3.2, we know that X l

Σ is
equidimensional of dimension four. Hence Xj ∩ V is dense in Xj for all j.

Because b|V is finite étale, the sets Xj ∩ V must be disjoint and finite étale
over U , too. Therefore the generic degree of Xj ∩ V over U is the same as the
degree at the fiber over πA, which shows that any set Xj ∩V must contain a point
Pi. As the sets Xj ∩ V are pairwise disjoint, this point cannot lie on any other
Xj′ .

We now give the geometric content of Theorem 3.4 which will be important in
Section 5.

Discussion 4.6 Let Rj be the coordinate ring of Xj . We fix one of the points
Pi on Xj and call it Qj . The corresponding residue field will be Kj , its ring
of integers Oj . Fix a surjection O[[y1, . . . , yn]] // // Rj for some n. When we
base change O[[y1, . . . , yn]] to K, the resulting ring is contained in the ring of
convergent power series on the open rigid analytic n-ball over K. For a more
rigorous discussion of the rigid space associated to Rj , we refer the reader to [9],
§1.1, or [20], §7.

Thus Xj/K can be viewed as a rigid threefold in this ball with the smooth
point Qj/K = SpecKj on it. After possibly passing to a finite extension of Oj ,
which we again denote by Oj , there exists a closed rigid analytic 3-ball, call it Bj ,
around Qj contained in Xj/Kj . To be explicit, one can choose coordinates of Bj

such that its affinoid algebra Aj is given by{ ∑
(i1,i2,i3)∈N3

0

ai1,i2,i3z
i1
1 z

i2
2 z

i3
3 : ai1,i2,i3 ∈ Kj , |ai1,i2,i3 | → 0 as i1 + i2 + i3 →∞

}
.

In those coordinates, Qj corresponds to the origin, and the Kj points of Bj are
the elements of Oj ×Oj ×Oj .
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5 Mazur’s infinite fern

Above we saw that, after rigidifying near the points Qj , the space X l
Σ/K looks like

a rigid ball of dimension three. This is more or less the basic situation in [18] that
led in a special case to the proof of the density of modular points in a universal
deformation ring. We will closely follow this approach. A good introductory
account of this can be found in [16], Sects. 7 and 8.

Definition 5.1 Let f(z) =
∑
aiq

i be the q-expansion of a normalized cuspidal
eigenform (of some level and weight) with coefficients in Q̄l. The slope of f is the
number v(al) ∈ Q ∪ {∞}.

The slope of a normalized cuspidal eigenform f of weight k is called critical if
it is 0 or k − 1.

Remark 5.2 (a) Cusp forms with Q̄l-coefficients of a given level and weight
have a Hecke invariant basis with Zl coefficients and form a finite dimensional
vector space. Hence their Fourier coefficients are algebraic integers over Zl and
v(al) ≥ 0 for any normalized cuspidal eigenform.

(b) The following remarks can be found in [17], Sect. 4:
If f is an l-newform of weight k for Γ0(l) ∩ Γ1(N), then its slope is k/2− 1.
If f is an l-oldform in Γ1(lN), then there exists a cuspidal eigenform g for Γ1(N),
such that f(z) is in the span of g(z) and g(lz). If the slope α of f is different
from (k − 1)/2, then this span contains exactly one other normalized cuspidal
eigenform f ′ of slope k− 1−α 6= α. In particular α lies in [0, k− 1]. The form f ′

is called the twin of f because of the following crucial observation made in loc.cit.:
All eigenvalues of f and f ′ away from l are the same, and hence their associated
Galois representations are identical.

Let N ′ be a positive integer prime to l. Let f be a cuspidal eigenform of
weight k for Γ1(lN ′) for the Hecke algebra T N ′ generated by the Hecke operators
Tp for all primes p and Diamond operators 〈n〉 for all integers n prime to lN ′. In
particular this means that f is of a specific nebentype. By ξ : (Z/(lN ′))∗ → Z̄∗l
we denote the corresponding nebentype character, and by ξl : (Z/(l))∗ → Z∗l its
component at l. Let τ : (Z/(l))∗ → Z∗l be the Teichmüller lift. We say that f has
l-character i, if τ i = ξlτ

−k where i ∈ Z/(l − 1).
For a ∈ K and r ∈ |K|, let B[a, r] denote the closed rigid analytic disc over

K around a of radius r. For an affinoid ring R, let Sp(R) be the correspond-
ing affinoid space. The following is an expanded version of [8], Thm. B5.7. and
Lemma B5.3.

Theorem 5.3 For any rational number α ≥ 0, positive integer k0 and i ∈ Z/(l−
1), there exist

(a) a rational number r ∈ |K|,

(b) an affinoid ring R,

(c) a finite degree d cover Sp(R) → B[k0, r] of affinoid spaces,

(d) elements an ∈ R with |an| ≤ 1 for all n ≥ 1,

such that the following holds. For any integer k > α + 1 such that |k − k0| ≤ r
and any finite field extension L/K, there is a bijection between
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(i) classical cuspidal eigenforms for Γ1(lN ′) with respect to T N ′ of slope α,
weight k, l-character k − i and Fourier expansion in L and

(ii) L-valued points x on Sp(R) in the fiber of k ∈ B[k0, r].

The bijection is given by sending a point x to the cuspidal eigenform fx with
q-expansion

∑
n≥1 an(x)qn.

Furthermore, the affinoid Sp(R) parameterizes all overconvergent cuspidal eigen-
forms of slope α, level lN ′ and weight in B[k0, r], and R is the Hecke algebra of
this family of overconvergent forms.

Proposition 5.4 Let Kd be the span of all extension fields of K inside Q̄l of
degree at most d. Then Kd is finite over Ql and all classical cuspidal eigenforms
parametrized by Sp(R) in the above theorem have Fourier expansion in Kd.

Proof: The finiteness of [Kd : K] is well-known. For the second assertion, note
that K is the residue field at all the points k ∈ Z ∩ B[k0, r]. Thus the fiber over
k in Sp(R) is a finite commutative K-algebra of dimension at most d. Therefore
all its closed points have degree at most d, and are hence contained in Kd.

Theorem 5.3 explicitly specifies the behavior of the l-part of the Nebentype.
The following lemma explains the behavior of nebentype characters away from l.

Lemma 5.5 Suppose we are in the situation of Theorem 5.3. Take k0 from there.
For any k ∈ Z ∩ B[k0, r], there exists a positive rational number r′ in the open
interval (0, r) such that the following holds: Given any two classical eigenforms
f1, f2 parametrized by points x1 and x2 of Sp(R), of weights k1, k2 > α+ 1 in the
disc B[k, r′]. Suppose their Nebentype characters are ξ1 and ξ2. If |x1 − x2| < r′,
then ξ1 = ξ2 away from l.

Proof: The functions an are all rigid analytic on the affinoid space Sp(R). In
particular given any finite number of such functions, any weight k and any ε >
0, one can find an r′ such that whenever x, x′ ∈ Sp(R) are over B[k, r′], then
|an(x)− an(x′)| < ε.

Choose primes {pi}i∈I that form a system of representatives for (Z/(N ′))∗

and that are congruent to 1 modulo l. Via the formulae ξj(pi) = p
1−kj

i (a2
pi
− ap2

i
)

the functions api and ap2
i

completely determine all the values of the characters ξj .
Choose r′ as above for these functions and for ε = |l|.

Suppose there is an i such that ξ1(pi) 6= ξ2(pi). As ξ1(pi)/ξ2(pi) is an l-power
root of unity, we have |l| < |ξ1(pi) − ξ2(pi)|. But due to our choice of r′ and as
pi ≡ 1(mod l), we find:

|ξ1(pi)− ξ2(pi)| ≤ max{|(p1−k1
i − p1−k2

i )(a2
pi

(x1)− ap2
i
(x1))|,

|p1−k2
i (a2

pi
(x1)− ap2

i
(x1)− a2

pi
(x2) + ap2

i
(x2))|}

≤ max{|p1−k1
i (1− pk1−k2

i )|, ε} ≤ |l|,

a contradiction.
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We now recall [8], Cor. B5.7.1, which is obtained as a corollary of Theorem 5.3,
where we add the observation of the previous lemma.

Corollary 5.6 Let k0 be an integer and α < k0 − 1. Suppose f is a cuspidal
eigenform of weight k0, slope α 6= (k0−1)/2, level lN ′ and Nebentype character ξ.
Suppose f is new away from l and choose an i such that f has l-character k0 − i.
Then there exist an affinoid disk B′ containing k0 and rigid analytic functions an

on B′ such that the following holds. For any integer k > α + 1 which lies in B′

the expression ∑
n≥1

an(k)qn

is the q-expansion of a classical cuspidal eigenform fk of weight k, slope α, level
lN ′ and character ξ away from l and l-character k − i. Also, at k = k0 we have
fk = fk0 .

Furthermore, let A′ be the affinoid algebra corresponding to B′. Then A′ is
the Hecke algebra of the family parametrized by B′ via the maps an, and as before
|an| ≤ 1 for all n.

To fully understand the following proof, the reader is advised to read the
article [18], as we quote various important results and techniques from loc.cit.

Proof of Theorem 3.7: We assume that the modular points are not Zariski dense.
Let V be the smooth dense open subset given in Theorem 3.4 which is the disjoint
union of the sets Xj∩V . Thus there must be a j such that the modular points are
not dense in Xj ∩V . We fix this j. Note that the set Xj ∩V/K is dense in Xj . So
we can find a function τj in the coordinate ring Rj which vanishes on all modular
points and which is not identically zero on Xj ∩ V/K. Let τ be the restriction
of τj to the ball Bj around the point Qj , in the notation of Discussion 4.6. This
function cannot be zero, because Bj is Zariski dense in Xj∩V/K. Also it vanishes
on Qj . Let fj be the newform corresponding to Qj and let N ′ be its prime-to-l
level. By the discussion above Theorem 3.4, the function fj has l-level dividing l,
Hence Remark 5.2 (b) shows that fj has finite slope.

The idea to prove density, cf. [18], is to look at the infinite fern as defined by
Mazur in [24]. Say we call any family as in Corollary 5.6 a Coleman family. The
infinite fern is the substructure in X l

Σ which arises as the union of the images of
all Coleman families. Even though p-adically this is like a one-dimensional curve,
cf. [9], with respect to the Zariski topology, it will be shown to be dense in a
suitable subvariety of X l

Σ of codimension one, the Hodge-Sen-Tate null space, cf.
[22].

Our first goal is to exhibit a good starting point for a Coleman family of
overconvergent modular forms.

Lemma 5.7 There exists a classical cuspidal eigenform of some weight k ≥ 2 and
level lN ′′, N ′′|N ′, which is new away from l, has non-critical slope, and whose
associated modular point lies in Bj.

Proof: We first look at the case where the slope of fj is zero. Let i be the l-
character of fj . If we would know that fj has l-character 0 it had to be an old form,
and we could replace it by its twin to achieve a situation where α > 0, cf. Remark
5.2. But this may not be the case, and so we first need to apply Theorem 5.3 with
k0 = 2, α = 0, K = Kj and N ′. Let x be the point on Sp(R) corresponding to
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fj . We choose a point x′ ∈ Sp(R) over some integer k > α + 1 = 1, |k − 2| < r.
By Lemma 5.5, and Theorem 5.3, we may also assume that the forms attached to
x, x′ have the same character away from l, by shrinking r if necessary. Then x′

corresponds to a point P ′ on X l
Σ. Shrinking r even further, if necessary, we may

assume that x′ corresponds to a point P ′ in the interior of Bj . Also we may take
k of the form k = 2 + ln(l + i − 2) for n � 0 where we view i ∈ [0, l − 2]. Then
the l-character of fx′ will be zero. Finally at this point we can replace the form
by its twin (P ′ does not change), and now we are in the situation where the slope
α is greater than 0.

If α is greater than zero, we go again through the previous argument. But we
stop at the point where we reached a point in Bj , i.e., highly congruent to our
given one, whose weight is bigger than α + 1 and whose l-character is 0. If fj is
not new away from l, we replace it by the corresponding new form - this gives us
N ′′.

We replace Qj by the point found by the previous lemma, and fj by the
corresponding form. In particular, fj does not have critical slope and is a cuspidal
eigenform for Γ0(N) ∩ Γ1(N ′′) of some weight k > α+ 1. Also, we replace Kj by
(Kj)d. Note that the radius of Bj did not shrink in all of this, but we do think
now of the ‘new’ Qj as the origin. The function τ still vanishes at Qj .

Lemma 5.8 Let f be a cuspidal eigenform of slope α, level lN ′ and weight k0

which is new away from l and which corresponds to a point in Bj. Assume further
that the weight of f is larger than α + 1, and that f is defined over K, a finite
extension of Ql. Then there exists a closed sub disk B′′ over K around k0 of
the disc B′ in Corollary 5.6 and a rigid analytic map c : B′′ → Bj such that the
following holds: For any point k ∈ Z ∩ B′′, k > α + 1 the image of the point
c(k) corresponds to the newform of slope α whose Fourier expansion is given by∑
an(k)qn. Once B′′ is chosen, the latter requirement makes such a map unique.

Proof: By [9], Thm. 2.4.2 and Prop. 3.4.2, there is a continuous map Φoc :
T l
O,Σ → A′, which is induced from the natural map from overconvergent l-adic

modular forms to l-adic modular forms. In Sect. 3.4 of loc.cit., it is assumed that
N is square-free. As T l

O,Σ is constructed from Hecke operators Tp for p 6 | lN ′ and
from the diamond operators, there is no problem in working with arbitrary N .
But if desired, one can also generalize Sect. 3.4 of loc.cit. to arbitrary N .

Consider the diagram

Rl
O,Σ

Φl
ΣΦoc

// A′

O[[X1, X2, X3]],

β

OO

γ

88qqqqqqqqqq

where γ := Φl
ΣΦocβ. The rigid space associated to O[[X1, X2, X3]] is the open

three ball B3[0, 1] of radius 1, cf. [20], Lemma 7.3.4. By continuity, the sections
Xi must map to elements of A′ of spectral norm less than 1, and thus γ factors
through a closed three ball B3[0, r] of radius r < 1. As β is finite and flat, it is
easy to see that Φl

ΣΦoc induces a map from Sp(A′) to the rigid space associated
to Rl

O,Σ, but in fact also to the affinoid subspace Z sitting above B3[0, r]. So one
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has a diagram of associated affinoid spaces

Z

b
��

Sp(A′)oo

yysssssss

B3[0, r].

In a small neighborhood of the point πA of B3[0, r], the map b is an étale cover,
and all the points in the fiber of πA are defined over O as well as local coordinate
systems near these points. Let Pf ∈ Z be the point in the fiber of πA corresponding
to f . Then the result follows by restriction to a suitable neighborhood of Pf .

In analogy to [18], below Thm. 2, we call a curve C in Bj a modular arc, if
C is the image of an overconvergent family over some closed disc B[0, r] under
a morphism as constructed above. Such an arc contains an infinite number of
(classical) modular points. In particular if we let C be the image of B′′ in Bj for
the family through f given in the previous lemma, then C is such an arc. As C is
not finite, it must be a curve. By shrinking B′′, we may assume that C is smooth.
As we want Qj to be a point on C, we may have to change it again. If we wanted,
we could shrink Bj to a neighborhood of Qj such that C ∩ Bj looks like one of
the coordinate axes with respect to suitable coordinates.

As in [18], one has a map (X l
Σ)0 × Ψ → X l

Σ, where Ψ is the one-dimensional
space of wild characters and (X l

Σ)0 the subspace of points x of X l
Σ whose Hodge-

Sen-Tate weight is of type (0, y) for some y, cf. [18], p. 7. We have an induced
subspace (Bj)0 which contains C. By further shrinking the situation, we may
assume that (Bj)0 is disjoint from (X l

Σ)00, so that C does not contain the image
of the weight zero points of B′. Let Ψ′ be a neighborhood of Ψ near zero. Then
C ×Ψ′ → Bj is unramified, so that its image M is a smooth surface, which is in
the zero locus of τ .

The affinoid algebra Bj is a unique factorization domain, so we can factor
τ = τm1

1 · . . . · τms
s where the τi are irreducible. The corresponding surfaces in Bj

will be Mi = {τi = 0}. We assume that M = M1 near Qj . If one of the Mi does
not contain C, and hence intersect it in only finitely many points, we can shrink
Bj and C, so that τi = 0 is outside Bj . Thus we assume that C is contained in
all Mi.

Let C(κ) denote the needles inside Bj of the infinite fern branching off C,
cf. [18], Sect. 6. There are infinitely many of those, and they are again modular
arcs. The argument in Sections 6 and 7 of loc.cit. then shows that M can only
contain a finite number of needles. For this it is not important that Bj does not
contain the whole image of Ψ× C.

We choose a needle C(κ) that is not contained in M1, and a smooth modular
point Q′j of finite non-critical slope on it. Furthermore, we replace Bj by a ball
B′j ⊂ Bj around Q′j whose radius is so small that M1 is outside this ball. This
yields the same situation as above, however the number of Mi that contain the
intersection of this needle with B′j is at most s − 1. Inductively we arrive at a
situation in which s = 1. Repeating the argument once more, we find a needle in
Bj whose intersection with τ = 0 is finite. This gives the desired contradiction,
as any needle contains an infinite number of modular points of finite slope.
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[14] F. Gouvêa, Arithmetic of p-adic modular forms, Lecture Notes in Math.,
vol. 1304, Springer Verlag, Berlin, Heidelberg, New-York, 1988.
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