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The main aim of the seminar is the following modularity lifting theorem:

Theorem 1. Let F/Q be a totally real number field and let ρ : GF → GL2(Qp) be a continuous representation
of its Galois group, where p > 5. Assume that ρ satisfies the following assumptions:

a) ρ is unramified outside a finite set of places.
b) ρ is odd, i.e. det(ρ(c)) = −1 for any complex conjugation c.
c) ρ is potentially crystalline and ordinary at all places v dividing p.
d) ρ|GF (ζp)

is absolutely irreducible.

e) There is a parallel weight 2 Hilbert modular form f such that the associated ρf is potentially crystalline
and ordinary above p and ρ = ρf .

Then there exists a Hilbert modular form g such that ρg ∼= ρ.

The strategy to show such a theorem is strongly influenced by the famous work of Wiles and Taylor on
Fermat’s last theorem. Namely, they proved the

Modularity theorem ([Wil95], [TW95]): Every semi-stable elliptic curve over Q is modular.

The link between these seemingly distinct statements is the use of Galois representations and in particular
their deformation theory, since there are several equivalent formulations of what it means for an elliptic curve
E/Q to be modular: Let f ∈ Sk(Γ1(N), χ) be a Hecke cuspform of weight ≥ 1. Let Kf be the field generated
over Q by the Fourier coefficients α`(f) for primes ` - N . Then Kf ⊇ Q(χ) is a number field. Let λ | p be a
place of Kf . To this setting by the work of Eichler, Shimura, Deligne and Serre there is attached an abelian
variety Af over Kf and a unique continous representation ρE,λ : GQ → GL2(Kf,λ), unramified at ` - Np and
such that tr(ρE,λ(Frob`)) = α`(f), det(ρf ) = χεk−1

p .

Then the following statements are equivalent and we call E/Q modular if they hold.

(1) E is over Q isogenous to Af for some f of some level.
(2) E is over Q isogenous to Af for some f of level equal to the conductor of E.
(3) For some prime ` the Galois representation ρE,` : GQ → GL2(Zl) on the `-adic Tate module of E is

equivalent to ρf for some f .
(4) (3) holds for all primes `.

The link to the above modularity lifting theorem is then given by (3) and one is left with verifying the
assumptions of Theorem 1 for the class of semi-stable elliptic curves. Especially the residual modularity condition
e) is intricate and linked to a special case of Serre’s conjecture. Fortunately, this special case was known at the
time of Wiles by work of Langlands-Tunnel and Ribet.

As mentioned above, the way to prove Theorem 1 is by introducing a deformation ring R and a certain Hecke
algebra T. R is constructed such that it ’knows’ the representations that reduce to ρ: They correspond exactly
to ring homomorphisms with domain R. T on the other hand parametrizes the modular Galois representations
reducing to ρ. By assumption e) we get a ring map R� T. If we can show that this is an isomorphism (fittingly
called an ’R = T theorem’) we are done.

The outline of the seminar will roughly be as follows: Recalling classical modular forms and elliptic curves
we realize that p-adic Galois representations come up in both settings: Hecke eigenvalues occur as traces of
Galois representations and the level of a modular form is linked to ramification phenomena. This makes up the
talks 1 and 2.

We then leave the world of modular forms and first study how to parametrize p-adic representations of given
ramification type with fixed reduction mod p. This is a mix of Galois theory and representations. Talk 3
introduces Mazur’s deformation theory of Galois representations. The cohomology of the tangent space of the
parametrizing ’deformation ring’ gives us crucial information on the dimension of this ring. Talks 4 and 5
explain this. Technically the most difficult part is when we try to fix the ramification type. As is to be expected,
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the places of residue characteristic p are the most difficult ones and we only deal with one special case1. This is
done in the talks 6-7.

In talks 8-9 we come back to modular forms in more generality. The language of automorphic forms and
representations is explained in the GL2 and quaternion algebra setting. The Jacquet-Langlands correspondence
relates these two. The quaternion forms were not present in Wiles’ original work. They are convenient in that
they allow to substitute étaleness properties of modular curves by simple group theoretic arguments for functions
on finite sets. A further simplification is achieved by making a solvable base change. Talk 11 will state the
necessary results.

The last 3 talks will tie together the deformation and Hecke rings by a commutative algebra reasoning, known
as the patching argument. Using earlier dimension results, talk 12 constructs a family of auxilliary places that
were originally unramified. Allowing ramification at these places corresponds to level raising on the Hecke side.
The conditions we impose on these places will ensure that there still is a strong relation to the original level.
For deformation rings this is almost immediate, for the modular side this is the aim of talk 13. Finally, talk
14 proves an R = T theorem on the original level by a kind of ’horizontal Iwasawa theory’ over the family of
auxilliary levels.

Talk 1. 16.10. Algebraic properties of classical Hecke algebras - Speaker: Juan Marcos Cerviño
First give a short overview of the definitions in classical modular form theory (taking for example §1.2-1.6 of

[DDT97] as a guide):

• Modular forms and cusp forms, Modular curves
• Mention, that cusp forms of weight 2 correspond to differentials on the modular curve
• Hecke and diamond operators for forms of level Γ1(N), newforms
• ”Motivate” the fact, that the full Hecke algebra TZ is module finite over Z (cf. theorem 1.6 from lec. 8

of [C+10]) by identifying Sk(Γ,Z) with group cohomology.

Now let O be the ring of integers of a p-adic local field K. The main part of this talk are results on algebraic
properties of TO and its localizations:

• Explain and prove the diagram (4.1.1) of [DDT97]: Galois orbits of normalized eigenforms in Sk(Γ,K)
correspond to irreducible components of SpecTO and on each of the latter lies a unique closed point.

• State that to such a closed point there is associated a residual Galois representation.
• Proof theorem 3.1 from lec. 8 of [C+10].

References: lec. 8 in [C+10] and references therein: For the first part: [DS05] or [Shi71]; for the second part:
[Mat80], [DDT97] §4.1 - Prerequisites: Classical modular forms

Talk 2. 23.10. Elliptic curves and FLT - Speaker: Konrad Fischer
This talk should first give the basic definitions considering elliptic curves and their Galois representations. It
should then motivate modularity lifting results by outlining the Frey-Serre-Ribet-Wiles-Taylor line of thought.
Elliptic curves: Weierstrass Equation, E.C. over C,Q,Qp, conductor, reduction at p, Tate-Modules, Global
and local Galois groups, Galois representations
Overview of FLT: Fermat’s Last Theorem, Frey’s Curve, Serre’s Conjecture (cf. Ribet-Stein in Park City
Series, Vol 9), Ribet’s level lowering, consequences of R = T theorems, Langlands-Tunnel theorem. The 3-5-trick
and why we would like a modularity lifting theorem for p ≥ 3.
References: §1.1 and the introduction of [DDT97] or a similar overview, [Sil92] for elliptic curves.
Prerequisites: Elliptic curves

Talk 3. 30.10. Universal deformation rings - Speaker: Yujia Qiu
We start with a given ’residual’ representation ρ : Γ→ GLn(k), where k is a finite field of characteristic p. Let
Λ be a noetherian complete dvr with residue field k, e.g. W (k).

• Introduce the categories CΛ, ĈΛ and the deformation functors Dρ, D
�
ρ of ρ

• Give equivalent statements for the finiteness condition Φp and proof that Φp holds for (restricted global
and local) Galois groups via CFT.

1To deduce FLT in a similar manner we would need to understand flat non-ordinary deformation rings. This involves finite flat

group schemes and Fontaine-Lafaille theory. We will content ourselves with the ordinary-crystalline case.
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• Proof the representability of D�
ρ

• Mention Schlessingers Criterion: If ρ is ’Schur’ and Φp is satisfied then Dρ is representable.
• Later we need Prop. 1.7 in lec. 5 [C+10]: if ρ is ’successively nonsplit extension’ then ρ is Schur2

• Introduce ad ρ and the tangent space of a representable deformation functor.
• Mention how the tangent space of a deformation functor is naturally a vector space over k.
• Proof as much as possible of the k-isomorphisms: H1(Γ, ad ρ) ∼= Ext1

k[Γ](ρ, ρ) ∼= Dρ(k[ε]).

References: A possible guideline: Lec. 3 in [C+10], references with many details: [Gou01] and [Maz97], shorter
and modern: [Böc13], §1. - Prerequisites: a bit of group cohomology, the results of class field theory

Talk 4. 6.11. Galois cohomology: The Poitou-Tate sequence and dual Selmer groups - Speaker:
Katharina Hübner/Johannes Anschütz
The reason we’re interested in Galois cohomology is that it gives certain deformation conditions via the isomor-
phism from last talk: H1(GK,S , ad ρ) ∼= Dρ(k[ε]).

• Recall continous group cohomology and some functorial properties: Res-Inf-sequence, Long-exact se-
quence.

• Specify to Galois groups and define local conditions: unramified deformations, Selmer groups, Poitou-
Tate-Duality and dual Selmer groups.

• Give the local and global Euler-Poincare-characteristic.
• Proof Wiles’ product formula.
• Calculate an example, if time permits.

References: Lec. 7 in [C+10], [Was97],[NSW08] - Prerequisites: Galois cohomology

Talk 5. 13.11. Deformation conditions and Global Deformation rings - Speaker: Andreas Mau-
rischat
In talk 3 we learned about universal deformation rings. Now we get more number theoretic: If we are deforming
a (global) Galois representation and we fix a lift of the residual determinant, can we restrict the determinant of
deformations to be this lift? This is an example of a ’global’ condition. It turns out such conditions are often
representable:

• Different perspectives on deformation conditions: subfunctors, closed subspaces of SpecRρ, relative
representability considered by Mazur and Kisin.

• Proof that the following are deformation conditions: fixing the determinant and how this is related to
ad0, being unramified at a given prime, being ordinary at a given prime.

The last two conditions are of a local nature: Is there a ring representing the deformations with a specified
ramification type at/outside of a specified set of primes? To impose such conditions at several primes at once

we need a tensor product in our category ĈΛ:

• Define completed tensor products: their universal property, some examples: Noetherianness can fail, if
not completed.

• Show that the global deformation ring naturally becomes an algebra over the local ones.
• If time permits: some easy relative dimension bounds.

References: For the first part: Lec. 5 in [C+10], [Gou01], [Böc13]; for the second part: Lec. 6 of [C+10]
Prerequisites: Talk 3

Talk 6. 20.11. Local deformation rings I: away from p - Speaker: Gebhard Böckle
To show that certain functors are smooth and connected we do many tangent space(=Galois cohomology)
calculations. Knowledge about formal schemes and rigid spaces is also helpful.

• Categories fibered in groupoids ([Böc13], section 1.6)
• Facts without proofs about generic fibers of deformation rings (see also lec. 3 in [C+10]): Lem. 3.1.1

and Theorem 3.1.2 in [Böc13]
• State Grothendieck’s monodromy theorem and define inertial WD-types.

2there should be an easier proof of this
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• Proof as much as possible from theorem 3.3.1 in [Böc13]; at least, that SpfRψ,�ρ [ 1
p ] is 3-dimensional with

smooth components if we assume representability and smoothness of the Steinberg components.
• Proof smoothness of the unramified component, assuming existence (§4 in lec. 20 of [C+10]).
• Kisin’s proof of representability involves a geometric argument: One includes the datum of a line to the

deformations and hence a P1 appears. Explain some of this following 3.5 in [Böc13].

References: lec. 20 in [C+10], lecture 3 in [Böc13]; the original source is Kisin [Kis09b]; maybe easier is Gee
[Gee11]
Prerequisites: Weil-Deligne-Representations; Algebraic Geometry: formal schemes, projective morphisms

Talk 7. 27.11. Local deformation rings II: above p - Speaker: Ann-Kristin Juschka
The easiest condition to impose at places above p (and very similar in technique to the Steinberg case in the
previous talk) is ordinarity for weight 2. This talk deals with the ordinary crystalline deformation rings at p.
Fortunately p-adic Hodge theory does not play a role here. The main existence result is in §3. Later talks will
refer in particular to 4.3, 4.5 and 4.6.

• §1, Motivation: Introduce the generic fiber RE , MaxSpec(RE). Mention: RE is Jacobson (cf. talk 3).
Points of the latter correspond to E-algebra representations ρx. We want to understand the P-loci3.

• §2, AlgGeo: The two reductions X0, X of proper X → SpecR coming from mR and π. Introduce (∗):
all completed local rings of X at closed points are smooth. Mention Prop. 2.1 and deduce Lemma 2.2
from it: the components of XE and X0 correspond. There is a functorial criterion for (∗): Prop. 2.3.
(formally smoothness for artinian points). State the criterion for XE → RE to be a closed immersion.

• §3, Ord-Cryst defo’s: Explain how ordinary E′-valued ρ correspond to H1(IK ,Zp(1))⊗Λ′. ρ is crystalline
if this class lies in a certain hyperplane. In general we need a topology-free definition: Def. 3.5., beware
that here GK-lines may be not unique! H1

crys is compatible with direct limits and compares with the
above definition. Mention lemma 3.10 (there are two proofs but explain none). Explain as much as
possible from the proof of Theorem 3.11: There is a closed X in P1

R whose infinitesimal fibers classify
ord-cryst structures.

• §4, Properties of X: Show: X is regular and flat using §2 and Lemma 3.10. State Prop. 4.2 without
proof. State 4.3-4.6, proving as much as time permits: 4.6 has an easy comm. alg. proof, while the
proof of 4.5 is longer but uses many different ideas.

References: Part 1: lec. 20 in [C+10] and §3.7 in [Böc13] (also with some background on formal schemes)
following Kisin [Kis09a]
Prerequisites: Algebraic Geometry (e.g. properness, smoothness, line bundles), Galois representations and co-
homology

Talk 8. 4.12. Automorphic representations - Speaker: Kathrin Maurischat/Mirko Rösner
Since one could easily hold several seminars about this topic alone, the emphasis in this talk should lie on
clear presentation of a few basic properties and examples, rather then sketchy proofs and definitions in utmost
generality.
Part 1 - Local theory:

• Recall admissible, smooth etc. complex representations of p-adic groups.
• Recall induction from subgroups, example: classification of GL2(Qp)-representations.
• The Hecke algebra H(G,K) := C∞(K\G/K), K-spherical representations, examples: K = GL2(O),
K = Iwahori.

Part 2 - Global theory:

• To have a class of important examples for the global theory, first introduce quaternion algebras (QA):
Local/global QA, ramification set, classification of QA by even ramification sets, orders in QA.

• Then explain automorphic forms with this examples in mind: Automorphic forms and representations
for GL2 and its inner forms over totally real number fields (being very brief at the archimedean places4)
The next talk will expand on this example.

• Mention the tensor product theorem.

3P being here just ’ord-cryst’
4one could for example ’only consider groups G, such that Gv|∞ ∼= GL2(R) or H×’ instead of defining (g,K)-modules etc.
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References: Bushnell-Henniart [BH] and Bump [Bum97] for the first part, Borel-Jacquet’s article from Corvallis
[BJ79] for the automorphic forms/reps part, Vigneras in french or Janntzen-Schwermer for the quaternion part;
also lecs. 9+10 in [C+10] for inspiration on the presentation
Prerequisites: Some familiarity with the representation theory of GL2

Talk 9. 11.12. Hilbert and quaternionic modular forms: Speaker: Patrik Hubschmid
The emphasis of the talk should be on the last part (possibly leaving out the middle on GL2/F ), explaining
levels and Hecke operators for quaternionic modular forms and making clear the role of strong approximation.

• How is a classical modular form adelized? A short sketch for GL2(Q) is in [Gee13], ex. 4.9. Longer in
[Bum97], §3.6.

• In the adelic language the generalization to Hilbert modular forms for GL2 comes natural, e.g. [Dim13],
§1.

• Finally, we will need automorphic forms for quaternion algebras over totally real fields: As for GL2 there
is the classical point of view (cf. [DV13], §3) and the adelic one (cf. [DV13], §7). Define their levels
(orders) and Hecke operators.

• Example: What happens for totally definite quaternion algebras D? By strong approximation we get
functions on a finite set! - [Tay06], §1.

• If time permits: What if a QA is split at exactly one infinite place? Shimura curves!

References: Articles from [Dar13] - Prerequisites: Adeles, quaternion algebras, modular forms

Talk 10. 18.12. Reserve date and Overview of the things to come
At this point we will probably be behind schedule. If there is time, perhaps someone could cover some of the
following:

• General fibers of deformation rings and field valued p-adic representations.
• Why do we only need an R[ 1

p ] = T [ 1
p ]-theorem?

• Structure of the patching argument.

References: Lectures 16 and 18 from [C+10]

Talk 11. 8.1. Langlands base change and the Jacquet-Langlands correspondence - Speaker: Tom-
maso Centeleghe
We will use solvable base change (proved by trace formula techniques) to simplify our setting for modularity
lifting. This talk will likely contain no proofs, but many beautiful theorems and hopefully some examples.

• Meta-Plan: Explain the results in the title and link them to potential automorphy. For example following
4.17-4.26 of [Gee13].

• An exact statement of the Jacquet-Langlands correspondance is for example in Taylors thesis [Tay89],
p.270-271. We need a result as in §1.5 of lec. 16 in [C+10].

• For base change see lec. 15 in [C+10] and [GL79].

References: Lecs. 15+16 of [C+10], Gee [Gee13], Taylor [Tay89], the overview in Corvallis [GL79],
Prerequisites: Some familiarity with the Langlands program

Talk 12. 15.1. Existence of Taylor-Wiles systems - Speaker: David Guiraud
By solvable base change we can assume that ρ = ρf with modular ρf which is everywhere Steinberg where it
is ramified outside p∞. This talk constructs by Galois cohomology methods a family of sets of places for the
patching argument.

• Define Taylor-Wiles places of level n ≥ 1.
• Show that the action of the ramification group at a T-W-place is via the sum of two tame characters -

Lemma 2 in [dS97] or lec. 24 in [C+10]. This gives R�
Q the structure of an O[∆Q]-algebra. Introduce

the augmentation ideal aQ and (if time permits) show R�
Q/aQ

∼= R�
∅ .

• Mention that by easy group theory the so-called Taylor-Wiles condition d) form Theorem 1 above implies
that ρ|GF (ζpn )

is absolutely irreducible for n ≥ 1.
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• Proof the first main theorem: Existence of T-W sets of arbitrary level. This involves some case by case
studies of subgroups of PGL2: don’t do all of them!

• Proof the second theorem: The number of local generators for the global deformation ring is constant
over the various T-W-levels.

References: lec. 24 in [C+10], de Shalit [dS97] for some details - Prerequisites: talk 4 and 5

Talk 13. 22.1. Construction of Hecke modules for patching - Speaker: Sundeep Balaji
Here the modules of quaternionic automorphic forms MQn , n ≥ 0 are introduced and several key properties
established: they are free of rank 2 over a suitable Hecke algebra and related to the n = 0 level by the
augmentation ideal an from last talk. The outline for this talk is lec. 25 from [C+10].

• Proof the canonical isomorphism R�
Q/aQ

(∗)∼= R�
∅ , cf. Lemma 2.0.2 in lec. 25 of [C+10], if this was not

done in the last talk.

We want to construct O[∆Q]-modules MQ for every T-W set Q, such that they satisfy the analogue of (∗):
• Recall the space of quaternionic automorphic forms, S(U) of level U ⊆ (D ⊗ AfF )×. We have already

seen them in talk 9. Define the ’good’ (=prime-to-the-level) Hecke algebra T(U).
• Define levels UQ, VQ, such that VQ/UQ ∼= ∆Q and their ’Q-enriched’ Hecke algebras T+, following lec.

25 from [C+10]
• Explain the ’smallness condition’ and why we can choose an auxilliary place vaux.
• Apply elementary group theoretic lemmata to our setting: S[UQ] is a finite free O[∆Q]-module.
• There should be at least 30 min left to explain the analogue of (∗): The proof is by induction on |Q|

and the theory of old-/new-forms.

References: lec. 25 from [C+10], Taylor [Tay06] for some details
Prerequisites: old/new automorphic forms, Hecke algebras: talks 1 and 9

Talk 14. 29.1. The patching argument - Speaker: Konrad Fischer
This talk presents the Taylor-Wiles-Kisin variant of techniques developed in [TW95]. At the heart of it lies an
inverse-limit argument for modules over the family O[∆Qn ]. To construct an inverse system out of these data
the pidgeon-hole principle makes a beautiful appearance.

• State our goal: The modularity lifting theorem (taking all reductions for granted).

• Recall properties of R̃� and Rv, v ∈ St ∪ Sp and outline how they transfer to properties (B1-B3) of

B := ⊗̂v∈St∪SpRv given in Prop. 2.1 of [C+10], lec. 27.

• Define g, such that BJx1, . . . , xgK � R�, h := |Q| and j as number of framing variables. Recall the

properties of R�
Q for T-W-sets Q and show h+ j + 1 = dimB + g.

• Now recall the Hecke modules MQn that we want to patch, frame them to get M�
Qn

and prove compat-

ibility (H1).
• First give a proof of an R[ 1

p ] ∼= T [ 1
p ] theorem assuming that we have an inverse system of rings and

modules R�
Qn

�M�
Qn

(section 3 of talk 27)
• Since there is a priori no relation between the different levels Qn, to make this ’inverse limit’ argument

work explain the pidgeon-hole principle that makes the patching work: section 4 of cite loc..

References: Follow lec. 27 in [C+10]. The last steps are also nicely explained in [Gee13].
Prerequisites: talks 13 and 14.

Talk 15. 5.2. Reserve date
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