Übungsblatt 7

09.06.2020

Abgabe bis zum 16.06.2020 um 09:00 Uhr

Aufgabe 1 (Funktorialität von Kern- und Kokernbildung, 2 Punkte). Sei A eine abelsche Kategorie und

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow g & & \downarrow g' \\
V & & \downarrow G' \\
C & \xrightarrow{f'} & D
\end{array}$$

ein kommutatives Diagramm. Wir wissen bereits, dass wir es zu einem Diagramm

$$0 \longrightarrow \ker(f) \longrightarrow A \xrightarrow{f} B \longrightarrow \operatorname{coker}(f) \longrightarrow 0$$

$$\downarrow^{g} \qquad \downarrow^{g'}$$

$$0 \longrightarrow \ker(f') \longrightarrow C \xrightarrow{f'} D \longrightarrow \operatorname{coker}(f') \longrightarrow 0$$

mit exakten Zeilen ergänzen können. Zeigen Sie, dass es eindeutige Morphismen g_0 und g_1 gibt, sodass das folgende Diagramm kommutiert:

$$0 \longrightarrow \ker(f) \longrightarrow A \xrightarrow{f} B \longrightarrow \operatorname{coker}(f) \longrightarrow 0$$

$$\downarrow^{g_0} \qquad \downarrow^{g} \qquad \downarrow^{g'} \qquad \downarrow^{g_1}$$

$$0 \longrightarrow \ker(f') \longrightarrow C \xrightarrow{f'} D \longrightarrow \operatorname{coker}(f') \longrightarrow 0$$

Bemerkung: Die Funktorialität kann tatsächlich durch einen Funktor ausgedrückt werden. Kern und Kokern lassen sich als additive Funktoren $\mathcal{A}^{\rightarrow} \rightarrow \mathcal{A}$ auffassen. Hierbei bezeichnet $\mathcal{A}^{\rightarrow}$ die *Pfeilkategorie* von \mathcal{A} .

Aufgabe 2 (Eine abelsche Funktorkategorie, 4+2 Punkte). Sei \mathcal{A} eine abelsche Kategorie.

- (a) Sei \mathcal{A}' eine volle Unterkategorie von \mathcal{A} , sodass insbesondere \mathcal{A}' eine prä-additive Kategorie und der Inklusionsfunktor $\mathcal{A}' \to \mathcal{A}$ additiv ist. Zeigen Sie die Äquivalenz der folgenden beiden Aussagen:
 - (i) \mathcal{A}' ist abelsch und der Inklusionsfunktor $\mathcal{A}' \to \mathcal{A}$ ist exakt.
 - (ii) \mathcal{A}' besitzt ein Nullobjekt, je zwei Objekte A, B aus \mathcal{A}' besitzen ein Produkt in \mathcal{A}' und für alle f aus Mor \mathcal{A}' existieren die in \mathcal{A} gebildeten Pfeile $\ker(f)$ und $\operatorname{coker}(f)$ bereits in Mor \mathcal{A}' ; letzteres bedeutet, dass es $g, h \in \operatorname{Mor} \mathcal{A}'$ gibt, so dass $g \simeq \ker(f)$ und $h \simeq \operatorname{coker}(f)$ in \mathcal{A} gilt.
- (b) Sei \mathcal{J} eine kleine prä-additive Kategorie und \mathcal{A} eine abelsche Kategorie. Zeigen Sie, dass sie volle Unterkategorie $\underline{\mathrm{Add}}(\mathcal{J},\mathcal{A})$ von $\mathcal{A}^{\mathcal{J}}$, die aus additiven Funktoren besteht abelsch ist. Sie dürfen ohne Beweis verwenden, dass $\mathcal{A}^{\mathcal{J}}$ abelsch ist und Limiten und Kolimiten in $\mathcal{A}^{\mathcal{J}}$ punktweise gegeben sind.

Aufgabe 3 (Filtrierte Kategorien, 2+2+2 Punkte). Sei (X, \leq) eine total geordnete Menge. Das heißt: X ist eine Menge und \leq ist eine reflexive, transitive und antisymmetrische Relation auf X, sodass für alle $x,y\in X$ stets $x\leq y$ oder $y\leq x$ gilt. Sei $\mathcal J$ eine Kategorie mit Ob $\mathcal J:=X$ und $\#\mathcal J(x,y)=1$, falls $x\leq y$ und $\mathcal J(x,y)=\emptyset$ sonst.

(a) Zeigen Sie, dass es genau eine Möglichkeit gibt, für \mathcal{J} die Komposition von Morphismen zu definieren und, dass \mathcal{J} filtriert ist. Die Kategorie \mathcal{J}^{op} ist also kofiltriert.

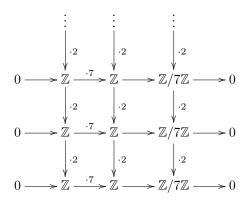
Sei nun $(X, \leq) = (\mathbb{N}, \leq)$ und \mathcal{J} die zugehörige filtrierte Kategorie aus (a).

(b) Für einen Z-Modul A definieren wir das Diagramm $D: \mathcal{J} \to \underline{\text{Mod}}_{\mathbb{Z}}$ durch

$$D(n) = A \quad \text{und} \quad D(n \to n+1) : A \to A, a \mapsto n \cdot a \quad \text{ für } n \in \mathbb{N}.$$

Sei $S = \mathbb{Z} \setminus \{0\}$. Zeigen Sie colim $D \cong S^{-1}A$.

(c) Wir betrachen in $\underline{\mathbf{Ab}}^{\mathcal{J}^{\mathrm{op}}}$ die folgende kurze exakte Sequenz von Diagrammen:



Wir schreiben kurz

$$0 \longrightarrow A_{\bullet} \xrightarrow{\cdot 7} A_{\bullet} \longrightarrow B_{\bullet} \longrightarrow 0$$

mit $A_i = \mathbb{Z}$ und $B_i = \mathbb{Z}/7\mathbb{Z}$ für alle $i \in \mathbb{N}$. Zeigen Sie, dass $\lim_{\mathcal{J}^{op}} A_{\bullet} = 0$ und $\lim_{\mathcal{J}^{op}} B_{\bullet} \cong \mathbb{Z}/7\mathbb{Z}$ gelten, und folgern Sie dass der Funktor $\lim : \underline{\mathrm{Ab}}^{\mathcal{J}^{op}} \to \underline{\mathrm{Ab}}$ nicht exakt ist.

Bemerkung: Die Bildung in 3(a) ist eine Art Umkehrung von Aufgabe 5 auf Blatt 4: Die halbgeordnete Menge ($[\mathcal{J}], \leq$) ist total geordnet und isomorph zu (X, \leq) .

Aufgabe 4 (Konstruktion filtrierter Kolimiten von Moduln, 2+2+2 Punkte). Sei \mathcal{J} eine kleine filtrierte Indexkategorie, R ein Ring und $D: \mathcal{J} \to R \underline{\text{Mod}}$ ein Diagramm. Seien die $D(j), j \in \text{Ob } \mathcal{J}$, ohne Einschränkung paarweise disjunkte Mengen. Sei

$$M_D := \bigsqcup_{j \in \mathrm{Ob}\,\mathcal{J}} D(j)$$

in Set die disjunkte Vereinigung der Mengen D(j), $j \in \text{Ob } \mathcal{J}$. Für $i, j \in \text{Ob } \mathcal{J}$ und $d_i \in D(i)$, $d_j \in D(j)$, definiert man

$$d_i \sim_D d_j \iff \exists f : i \to k, g : j \to k \in \text{Mor } \mathcal{J} \text{ mit } D(f)(d_i) = D(g)(d_j) \in D(k).$$

Dies ist eine Äquivalenzrelation auf M_D . Auf der Menge $U_D := M_D/\sim_D$ der Äquivalenzklassen [d], $d \in M_D$, definiert man eine Addition und eine Skalarmultiplikation mit R durch

$$[d_i] + [d_j] = [D(f)d_i + D(g)d_j]$$
 und $r[d_i] = [rd_i]$

für $i, j \in \text{Ob } \mathcal{J}$ und $d_i \in D(i)$, $d_j \in D(j)$ und Pfeile $f, g \in \text{Mor } \mathcal{J}$ mit dom(f) = i und dom(g) = j, so dass cod(f) = cod(g), und für $r \in R$. Es darf im Weiteren ohne Beweis angenommen werden, dass U_D und diese Verknüpfungen wohldefiniert sind, dass U_D vermöge dieser Verknüpfungen ein R-Modul ist, und dass die Abbildungen $\iota_i \colon D(i) \to U_D$, $d_i \mapsto [d_i]$ R-linear sind. Zeigen Sie:

- (a) U_D ist zusammen mit den Homomorphismen $\iota_j \colon D(j) \to U_D, \ j \in \mathrm{Ob} \ \mathcal{J}$ ein Kolimes von D.
- (b) Eine Klasse $[d_i]$ für $i \in \text{Ob } \mathcal{J}$ und $d_i \in D(i)$ ist genau dann die 0 in U_D , wenn ein Pfeil $f: i \to j$ in \mathcal{J} existiert mit $D(f)d_i = 0$ in D(j).
- (c) Ein Morphismus $\varphi: D \to D'$ von Diagrammen induziert eine Abbildung $\varphi_*: M_D \to M_{D'}$ in <u>Set</u>. Es gilt $[d] \sim_D [d'] \Rightarrow \varphi_*(d) \sim_{D'} \varphi_*(d')$. Die induzierte Abbildung $U_D \to U_{D'}$ ist R-linear und stimmt mit der durch die universelle Eigenschaft des Kolimes induzierten Abbildung colim $D \to \text{colim } D'$ überein.

Bemerkung: Aus der Konstruktion von U_D und Aufgabe 4(a) folgt, dass für filtrierte \mathcal{J} der Vergissfunktor $R \underline{\text{Mod}} \to \underline{\text{Set}}$ mit colim kommutiert.