Übungsblatt 9

23.06.2020

Abgabe bis zum 30.06.2020 um 09:00 Uhr

Aufgabe 1 (Injektive Auflösungen, 1+2+2+1 Punkte). Sei $n \in \mathbb{N}$. Zeigen Sie:

- (a) \mathbb{Q} ist ein injektives Objekt in \mathbb{Z} Mod.
- (b) Es gibt kurze exakte Sequenzen der folgenden Form:

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0,$$

$$0 \longrightarrow \mathbb{Z}/n \longrightarrow \mathbb{Q}/\mathbb{Z} \xrightarrow{\cdot n} \mathbb{Q}/\mathbb{Z} \longrightarrow 0.$$

Geben Sie explizite Abbildungsvorschriften für alle Pfeile an, so dass die obige Aussage stimmt!

- (c) Erläutern Sie, wie man aus (b) unter Verwendung des Struktursatzes für endlich erzeugte Z-Moduln¹ für jeden solchen eine injektive Auflösung erhält.
- (d) Für einen Hauptidealring R mit Quotientenkörper $K \supset R$ sind K/R und K injektive Objekte in R Mod. Es genügt, wenn Sie die Aussage für einen der R-Moduln K oder K/R zeigen.

Bemerkung: Teile (b) und (c) lassen sich mit Hilfe von (d) auf beliebige Hauptidealringe R verallgemeinern.

Aufgabe 2 (Homotopie, 2+2+2 Punkte). Sei \mathcal{A} eine additive Kategorie. Falls C^{\bullet} , $D^{\bullet} \in \underline{\operatorname{Ch}}^{*}(\mathcal{A})$ und $f, g : C^{\bullet} \to D^{\bullet}$ Kettenmorphismen sind, dann schreiben wir $f \sim g$, falls f homotop zu g im Sinne von Definition III.51.(a) ist. Man beachte die Reihenfolge von f und g. Zeigen Sie:

- (a) \sim ist eine Äquivalenzrelation auf $\underline{\operatorname{Ch}}^*(\mathcal{A})(C^{\bullet}, D^{\bullet})$.
- (b) Seien $f, f': C^{\bullet} \to D^{\bullet}$ und $g, g': D^{\bullet} \to E^{\bullet}$ Kettenmorphismen, sodass $f \sim f'$ und $g \sim g'$ gelten. Dann gilt $g \circ f \sim g' \circ f'$.
- (c) Sei \mathcal{B} eine weitere additive Kategorie und $F: \mathcal{A} \to \mathcal{B}$ ein additiver Funktor. Die Vorschrift $F(C^{\bullet})^i := F(C^i)$ und $(Ff)^i := F(f^i) : C^i \to D^i$ definiert einen additiven Funktor $F: \underline{\operatorname{Ch}}^*(\mathcal{A}) \to \underline{\operatorname{Ch}}^*(\mathcal{B})$. Weiter gilt für Morphismen $f, f': C^{\bullet} \to D^{\bullet}$ in $\underline{\operatorname{Ch}}^*(\mathcal{A})$ die Aussage $f \sim f' \Rightarrow Ff \sim Ff'$.

Bemerkung zu (c): Der Funktor $F: \underline{\operatorname{Ch}}^*(\mathcal{A}) \to \underline{\operatorname{Ch}}^*(\mathcal{B})$ ist ebenfalls additiv, das müssen Sie nicht zeigen.

Aufgabe 3 (Azyklische Komplexe, 2+1+2+3 Punkte). Sei \mathcal{A} eine abelsche Kategorie. Für einen Doppelkomplex C in $\underline{Ch}^{**}(\mathcal{A})$ und $n \in \mathbb{N}$ definieren wir Doppelkomplexe $\tau^{\geq n}C$ und $\tau^{\leq n}C$ durch:

$$(\tau^{\geq n}C)^{ij} := \left\{ \begin{array}{ll} C^{ij}, & \text{falls } j \geq n, \\ 0, & \text{sonst,} \end{array} \right. \quad d^{ij}_{\tau^{\geq n}C,?} := \left\{ \begin{array}{ll} d^{ij}_{C,?}, & \text{falls } j \geq n, \\ 0, & \text{sonst,} \end{array} \right. \quad \text{für } ? \in \{\mathbf{v},\mathbf{h}\}, (i,j) \in \mathbb{Z}^2.$$

$$(\tau^{\leq n}C)^{ij} := \left\{ \begin{array}{ll} C^{ij}, & \text{falls } j \leq n, \\ 0, & \text{sonst,} \end{array} \right. \quad d^{ij}_{\tau^{\leq n}C,?} := \left\{ \begin{array}{ll} d^{ij}_{C,?}, & \text{falls } j \leq n \text{ und } ? = \mathbf{h}, \\ d^{ij}_{C,?}, & \text{falls } j < n \text{ und } ? = \mathbf{v}, \end{array} \right. \quad \text{für } ? \in \{\mathbf{v},\mathbf{h}\}, (i,j) \in \mathbb{Z}^2.$$

Zeigen Sie:

(a) Ist die Folge

$$0 \longrightarrow D_1^{\bullet} \longrightarrow D_2^{\bullet} \longrightarrow D_3^{\bullet} \longrightarrow 0$$

exakt in $\underline{\mathrm{Ch}}^*(\mathcal{A})$, so gilt: Sind zwei der Komplexe D_1^{\bullet} , D_2^{\bullet} , D_3^{\bullet} azyklisch, so auch der dritte.

¹Diesen dürfen Sie ohne Beweis aus der Standardliteratur zitieren.

Sei nun C ein Doppelkomplex in $\underline{\operatorname{Ch}}^{**}(A)$.

(b) Für alle $n \in \mathbb{Z}$ ist die kurze Sequenz

$$0 \longrightarrow \tau^{\geq n} C \longrightarrow C \longrightarrow \tau^{\leq n-1} C \longrightarrow 0$$

in $\underline{\mathrm{Ch}}^{**}(\mathcal{A})$ exakt. Die Übergangsabbildungen $(\tau^{\geq n}C)^{ij} \to C^{ij}$ und $C^{ij} \to (\tau^{\leq n-1}C)^{ij}$ sind durch Identitäten gegeben wo möglich, ansonsten durch die Nullabbildung.

Ab nun erfülle C die folgende Bedingung:

- Für alle $j \in \mathbb{Z}$ ist die Zeile $(C^{ij}, d^{ij}_{\mathbf{v}})_{i \in \mathbb{Z}}$ ein azyklischer Komplex.
- (c) Existieren $b_0 \leq b_1$ in \mathbb{Z} , sodass $C^{ij} = 0$ für alle $j > b_1$ und alle $j < b_0$ und alle $i \in \mathbb{Z}$ gilt, so ist Tot(C) azyklisch.

Hinweis: Führen Sie einen Induktionsbeweis und verwenden Sie die Exaktheit von Tot und Teil (a).

Ab nun gelte für C die folgende zusätzliche Bedingung:

• Es gibt ein $b \in \mathbb{Z}$, sodass $C^{ij} = 0$, falls i < b oder j < b.

Doppelkomplex $\tau^{\leq b_1}C$ erfüllt die Voraussetzungen von (c).

(d) Der Komplex $\operatorname{Tot}(C)$ ist azyklisch. **Hinweis:** Überlegen Sie hierzu folgende Aussagen für ein festes $i \in \mathbb{Z}$: Es gibt ein $b_1 \geq b$ in \mathbb{Z} , sodass gelten: (i) $\operatorname{Tot}(\tau^{\geq b_1+1}C)^j = 0$ für alle $j \leq i+1$. (ii) $H^i(\operatorname{Tot}(C)) = H^i(\operatorname{Tot}(\tau^{\leq b_1}C))$. (iii) Der

Allgemeiner Hinweis: Veranschaulichen Sie sich bildlich, bei welchen Doppelindizes in \mathbb{Z}^2 die jeweiligen Doppelkomplexe nichtverschwindende Einträge haben.