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Consider a quaternion algebra B over a totally real field F , which splits at exactly one
archimedean place τ and ramifies at a non-archimedean place p (lying over a rational prime p,
say). Let B̄ denote the quaternion algebra obtained from B by changing the local invariants
exactly at τ and p. Denote by G the algebraic group over Q defined by B×. Let C = Cp ·Cp

be a compact open subgroup of G(Af ), with Cp ⊂ B×p maximal. The associated Shimura
curve has a canonical model SC over F . The following theorem started the topic of p-adic
uniformization of Shimura varieties:

Theorem [Cherednik ’76]: After extending scalars from F to F̄p there is an isomorphism of
algebraic curves

SC/F̄p
∼= B̄×\

(
Ω2
Fp
×G(Af )/C

)
×Fp F̄p.

Here, Ω2
Fp

denotes the rigid Drinfeld upper halfplane, P1
Fp
\P1(Fp), and the double-quotient

on the right is understood as algebraic curve via GAGA.

For F = Q Drinfeld gave an integral version of this theorem, using a moduli interpretation
that is only available in this special case. In higher-dimensional cases, whenever a moduli
interpretation was possible, Rapoport and Zink [26] generalized this integral version.

The aim of this seminar is to understand all the objects involved here. More specifically,
we want to shed some light on the preprint [5] that freely uses and extends many of these
ideas to a non-moduli situation:

Theorem [Boutot-Zink ’99]: Let F , B, G and C be as above, the latter with arbitrary p-
component. Furthermore, let F̆p be the completion of F ur

p . Then there is an isomorphism of

towers of formal schemes over F̆p,

B̄×\
(

Ω̂2
Fp
×Spf Op Spf Ŏp ×G(Af )/C

)
∼= S∧C ×Spf Op Spf Ŏp,

which is G(Af )- and Frobenius-equivariant.

We plan to have 4 talks on foundational material covering the different geometric settings
(rigid and formal) and the group objects we want to parametrize later (finite flat and p-
divisible groups). We will discuss Ωd and its formal model in detail. After a report on
Rapoport-Zink’s work on moduli spaces, we will have 3 talks explaining the formalism of
Shimura varieties, covering the basics, important examples and in particular Shimura curves.
In the last 4 talks we turn to the preprint [5] and explain how it makes use of and generalizes
Rapoport-Zink.

Note, that we don’t meet on fridays after holidays (May 6 and May 27). If
you are interested in giving a talk, please write an email to the organizers.
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1 Talks

Talk 1 (Rigid analytic spaces and the example of Ωd - excess duration: 135 minutes).
Main references are [9, 21], for an overview see also [1, Parts 1,2],[32]

Start with an explanation why the naive viewpoint of locally analytic functions is not
sufficient for non-Archimedean fields: E.g., give an example for a failure of the identity the-
orem. Introduce the main objects (and their basic properties) from [21] or [9]: Tate algebra
and the Gauß norm, affinoid algebras, Noether normalization and Maximum principle ([21,
Sections 1.2-1.4]). Continue with subdomains and admissible opens [9, Section 2.2] with an
example (e.g. the Laurent domains of [9, Exercise 2.1.6]), introduce the Tate topology (and
contrast this with the canonical topology, as in [9, Exercise 2.1.1]) where you can, if time
permits, shortly mention how this is an example for a Grothendieck topology. State Tate’s
acyclicity theorem [21, Theorem 1.3.8] and its consequences for presheaves without proofs.
Continue with rigid analytic spaces ([9, Definition 2.4.1]), the rigidification functor [21, Def-
inition 1.6.9] and examples: An,rig ([9, Example 2.4.3]), Pn,rig ([9, Example 3.2.5] and [15,
Example 4.3.3(5)]).

The aim of the last part is to discuss the example of Ωd and the ’first proof’ of [27,
Proposition 1]. For this, first define the Bruhat-Tits building for GLd with special emphasis
on the case d = 2 [4, §1] (see also [25, Chapter 4] for an overview). Continue with the proof
(as carefully as the remaining time permits) as sketched in [27, p. 50-51], filling the gaps
using [13, §6].
Date: April 22, 2016 and April 28, 2016 (SR 11,2pm) Speaker: Özge Ülkem

Talk 2 (Formal schemes, Raynaud’s formal models and Ω̂d - excess duration: 135 min-
utes). [2], [9, Section 3.3], but see also [31, 3].

Start with a short overview of adic rings (along [2, Section 7.1]), introducing the a-adic
topology, adic rings, ideals of definition, separatedness and completeness. Continue with the
definition of (affine) formal schemes as in [2, Section 7.1], including the formal completion [2,
Example 7.1 (4)]. Treat the example ’For example [..] of An

K ’ of [2, p. 161] in detail. Mention
the characterization of formal schemes as sheaves on NilpΛ [31, Remark 2.1.7]. Continue with
tfp and admissible formal schemes ([2, Definition 7.4 (1) and Remark 7.4 (2)]), explaining
also the functor X 7→ Xrig and the terminology of formal models [2, Proposition 7.4 (3) and
Definition 7.4 (4)]. Contrast this with Raynaud’s generic fiber functor [9, Exercise 3.3.8,
Example 3.3.9 and Exercise 3.3.10]. In the remaining time say as much as possible about
the (admissible) formal blow-up construction (a short summary is in [9, Exercise 3.3.11], but
much more can be found in [2, Section 8.2]) and its consequences for the question of unicity
of (Raynaud’s) formal models.

Discuss in detail the example Ω̂d
F as a formal scheme and its relation to Ωd

F , following
[4]. Discuss the local moduli interpretation of Deligne in terms of free modules over complete
separated O-algebras [4, Section 4]. Mention the global moduli interpretation of Drinfeld
[4, Section 5], but don’t go too deep into details. Explain the correspondence with Ωd via
Raynaud’s generic fiber [19, page 222].
Date: April 28, 2016 (SR 11,2pm) and April 29, 2016 Speaker: Rudolph Perkins

Talk 3 (Finite flat commutative group schemes). Main reference: [24, 29], but see also [28].
Recall/Introduce the main objects and their properties from [24, Lectures 1 and 2]: Affine

group schemes and their characterisation in terms of Hopf algebras, the properties ’finite’,
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’flat’, ’unramified’, ’connected’ and ’etale’. Cartier duality [28, Proposition 3.2.4], functor
of points, isogenies and treat some examples from [29, §2] or [28, Section 3.1]. Particular
attention should be payed to the problem of existence of kernels (which is easy, [29, (1.7)]) and
cokernels [29, (1.8)]. Explain how the existence of cokernels [29, 3.4 Theorem] is established
using the characterization of ffgs as sheaves for the fppf (faithfully flat finite presentation)
site [16, Chapter 4] and [28, Section 5]. Also remark the result that the category of finite
flat group schemes over a field is abelian, cf. [14, Proposition 6.5]. Prove the connected-etale
exact sequence over a Henselian local ring [29, (3.7)]. Continue with Dieudonne theory for
commutative ffgs of p-order over a perfect field of characteristic p: The result to be reached
is [24, Theorem 28.3], but you can go along [20, Parts 1 and 2]: Define the Dieudonne ring
and give the statements of [20, Theorem 1.2]. As time permits, discuss the example(s) from
[20, Section 2.1 and 2.2].
Date: May 13, 2016 Speaker: Juan Marcos Cerviño

Talk 4 (p-divisible groups). Main reference: [16]
Start with the definition of abelian varieties [16, (1.3) Definition] and examples (as elliptic
curves [16, (1.7) Example] and [16, Examples (1.9) and (1.10)]).

Next, introduce isogenies along [16, Section 5, §1], including [16, (5.9) Proposition] and [16,
(5.13) Corollary]. Define the isogeny category Isog and explain its main features (Poincare
reducibility and semisimplicity of Isog) along [8, Section 7.6]. Next, introduce p-divisible
groups as inductive systems of ffgs [16, (10.10) Definition] and explain the characterization
as limits of fppf schemes in [16, (10.13)] (or [31, Section 1.1]). Also introduce Tate’s formal
Lie groups as in [30, (2.2)] and state the equivalence of categories as in Proposition 1 of
ibid. Continue with the p-divisible group X[p∞] attached to an abelian variety [16, (10.16)
Definition] and [16, (10.17)]. Introduce polarizations [16, (11.6) Definition] and continue, if
time permits, with the remainder of [16, Section 11, §1], i.e. with [16, (11.10) Proposition]
and the explanations thereafter. Shortly explain the Rosati involution [16, Section 12, §3]
(Section 12 can only be found on Moonen’s website!). Continue with the extension of the
Dieudonne-theory to p-divisible groups [17, III.5.6 Theoreme]. Mention that this gives rise to
an association of Dieudonne module to abelian varieties, cf. [20, Section 3].
Date: May 20, 2016 Speaker: Tommaso Centeleghe

Talk 5 (Report on Rapoport-Zink’s work). The aim of this talk is to introduce certain moduli
problems of p-divisible groups and report on representability results, following [26]. References
are to this book, unless stated otherwise.

The main result of the first part is that the moduliM of quasi-isogenies to a given p-div.-
gp. are representable, (2.16). To explain this, define quasi-isogenies of p-div.gp’s, (2.8), and
then sketch the idea of the proof (2.16) giving as much details as time permits:

• a crucial finiteness property in the building of p-adic GLn (2.18)
• reformulate this as an approximation statement (2.27)
• cover M by subfunctors Mc bounding the height
• Mc is representable (2.28).

Finally, mention that under suitable conditions the quotientM/Γ exists, where Γ is a discrete
subgroup of the quasi-isogenies of X.

The second half of the talk introduces level structures, Weil descend, and the rigid cover-
ings M of M: More precisely, define the (p-adic) (PEL) data from (1.38)+(3.18) and explain
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how we get a p-div.gp. X/L from this. State Def. (3.21), explaining the importance of Kot-
twitz’ condition (iv), see also (3.58). For time reasons, you will have to be vague about lattice
chains. We will think of them as ’level structure’. Anyway, we will apply theorem (3.25) only
for trivial level structure. State (3.25) and its proof1.

You should have 10 minutes left, to give the general definition of Weil descent (3.44-3.47).
Date: June 3, 2016 Speaker: Konrad Fischer

The next three talks introduce the machinery of Shimura varieties. There are many sources
for this material. The original works by Deligne [10, 11] are the definite reference, but are
not very gentle on the reader. We chose to follow the outline of Harris [18]. The speakers are
welcome to supplement this (e.g. by [22] etc.).

Talk 6 (Sh.Var.I: Hodge structures, Deligne’s axioms and Tori).
First a reminder on reductive groups: references are to [23]. Mention ’Chevalley’s theorem’
(10.25), linear alg. gp’s (LAG):=finity type+affine=closed in some GLn (4.8). Now restrict
to LAG: smooth in char 0 (3.38), quotients exist! (5.21). Give def. of connected+simply con-
nected (and what does that mean for C). State: G◦ normal, π0(G) is a finite group (§5i). Give
equivalent def’s of unipotent, defineRu(G) and give examples (GLn, SLn, Sp2n, Un, Bn,Gn

a , αp).
Define ’reductive’:=’Ru(Gk̄) = 0’ and sketch: GR reductive ⇐⇒ ∃ Cartan involution.
Remind us of tori ; particularly S := ResC/R(Gm) and U1. Show: S is affine. Give the s.e.s.

1 → S1 ↪→ S N→ Gm/R → 1 and 1 → Gm/R
w→ S → U1 → 1. Recall the representation theory

of these groups, cf. [22, p.19+26+50].
Recall the exact sequences from [10, §1.1]. Define Shimura data (G,X) for reductive G/Q.
Give some insight/motivation for the 3 ’main’ axioms (cf. [22, pp.30,54], [11, 1.1.14]). Define
the system MK(G,X) and the G(Af )-action. Mention that for small K ⊆ G(Af ), approxi-
mation + Baily-Borel give algebraic structure over C (!). Explain ’connected components =
0-dimensional Shim.var.’ by going through §2 of [10] or §5 of [22], assuming Gder is simply
connected.
Date: June 10, 2016 Speaker: Andreas Maurischat

Talk 7 (Sh. Var. II: Symplectic groups, canonical models).
In [10, §5] Delinge constructs from a monomorphism of Shimura data (e.g. PEL ↪→ symplectic)
an inclusion of Shimura varieties and gets canonical models for the PEL-case. Aim of this
talk is to give the symplectic picture, define canonical models and say something on their
construction in the symplectic case. References are to [22].

Begin by introducing the Shimura datum to a symplectic space, pp.66-67, and checking
(SV1)-(SV6). Say something about the moduli interpretation (Prop. 6.3) (in terms of Hodge
structures or, equivalently by Riemann’s theorem, in terms of complex abelian varieties, Thm.
6.11).

Define the reflex field E(G,X) of a general Shimura datum, 12.2-12.4(b). Then continue
with special points, pairs and the homomorphism rx, 12.5-12.7. Finally give the definition of a
canonical model, 12.8. Maybe say something, how this compares to the definition 3.13 of [10].
Using the theorem of Shimura-Taniyama, Delinge in [10, 4.21] constructs a canonical model
for the symplectic case. Much more details can be found in [22, §14]. Assuming Deligne’s
result (’there are many special points’, [10, 5.1]), uniqueness is an easy consequence.
Date: June 17, 2016 Speaker: Johannes Anschütz

12 x ’clearly’ + 2 x ’obviously’ = proof
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Talk 8 (Sh. Var. III: PEL-case, Shimura curves and ’strange models’).
References to [22]: Recall the structure of semi-simple k-algebras with involution (B, ?) from
[22, 8.3], for k = k̄. Classify symplectic (B, ?)-modules and define the associated reductive
groups for cases (A),(C); cf. [22, 8.7]. If B carries a positive involution there is a unique
Shimura datum satisfying (1)-(4), Prop. 8.14, and it has a moduli interpretation, Thm. 8.17.
Explain how to get a canonical model by ’embedding’, cf. [22, p.115] and in general [10, 5.7].

What goes wrong in the Shimura curve case: E(G,X) [22, 12.4(d)], and then §6 of [10],
with details explained in [6].
Date: June 24, 2016 Speaker: Konrad Fischer

The remaining talks are on the preprint [5]. Note that we don’t cover the construction of
detN in §2 of the paper.

Talk 9 (Unitary Shimura curves as moduli after Boutot-Zink, part 1).
Begin by introducing the general notation of [5], which will be used throughout the remainder
of the seminar. The relevant objects (F ⊂ K maximal totally real subfield in a CM-field,
the division algebra B, the alternating nondegenerate bilinear form ψ, the unitary group G̃•,
the compact open subgroup (level) C ⊂ G̃•(AF,f ), . . . ) in [5, pp. 5–7] should be explained
carefully. Emphasize that we assume that the level C is maximal at q (cf. [5, p. 7]). This
assumption will be dropped in Talk 11.

Continue by introducing the category AV of abelian OK-schemes up to isogeny of order
prime to p, the field E and the (PEL-)moduli problem AC on the category of OE-schemes.
State the representability result for the sheafification AC of AC for sufficiently small C ([5,
Proposition 1.1]). If time permits, the proof could be sketched (shortly!). The OE-schemes
AC form a projective system for varying C. Explain the action of G•(Af ) on this projective
system and why the projective limit exists as a scheme, use this to define the projective
OE-scheme AC for general C ([5, pp. 12–14]).

The main aim of this talk is to proof [5, Lemma 1.8], which states that over Ep∞ , AC

is isomorphic to the unitary Shimura curve ShC associated to G• and (W,ψ). Skip [5, pp.
15–20] which will be discussed in the next talk. Start with the definition of ShC in [5, p. 21]
and explain why, for sufficiently small C, ShC is a fine moduli scheme of a functor closely
related to AC . Then continue with the proof of [5, Lemma 1.8].
Date: July 1, 2016 Speaker: Mirko Rösner

Talk 10 (Uniformization of unitary Shimura curves after Boutot-Zink, part 2).
Building on the previous talk, the main aim of this talk is to prove an integral uniformization
theorem for unitary Shimura curves ShC with C maximal at q ([5, Theorem 1.12]). Begin
by defining the moduli problem M̆ of p-divisible OBp-modules ([5, Definition 1.4]). By [26,
Theorem 3.25] this functor is representable by a formal scheme locally formally of finite type
over Spf OĔ . Continue by introducing the Weil descent datum on M̆ and define the action of
G•(Af ) ([5, pp. 16-17]).

The key ingredient to prove the uniformization theorem is the uniformization morphism
Θ : M̆× G̃•(Ap

F,f )/Cp → AC ×OE
SpecOĔ . Define this morphism and study its fibers as well

as compatibility with the Weil descent data on both sides ([5, pp. 17–20]). Explain why Θ
induces an isomorphism of formal schemes following [26, 6.30].

Putting this together with the results of the previous talk that relate AC and ShC , we are
able to prove a first uniformization theorem for unitary Shimura curves ([5, Proposition 1.9].
For this, we need to introduce the notation on [5, pp. 24–25]. Conclude this talk by defining
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the moduli problem N̆ ([5, Definition 1.10]), which is closely related to M̆ ([5, Proposition
1.11]) and reformulate the uniformization theorem in the form [5, Theorem 1.12]. In the next
talk we will see how N̆ is related to the formal scheme Ω̂d

E (cf. Talk 2).
Date: July 8, 2016 Speaker: David-A. Guiraud

Talk 11 (Unitary Shimura curves with bad level structure after Boutot-Zink).
In order to get a better understanding for the results of the previous talk, we want to relate
N̆ to the formal scheme Ω̂d

E . Recall (or introduce) the global moduli interpretation of Ω̂d
E

of Drinfeld for general d (cf. Talk 2 or [12, Section 2]), which can be used to relate N̆ and
Ω̂d
E and to reformulate the uniformization theorem of the previous talk ([5, Theorem 1.12]) in

terms of Ω̂d
E ([5, pp. 28–29]).

The main aim of this talk is to extend the results of the previous talk to unitary Shimura
curves with bad level structure C, i.e. where C is no longer maximal at q. In this setting, the
uniformization isomorphism will no longer be integral and we have to work in the category of
rigid analytic spaces over Ĕ. Begin by introducing the rigid analytic pro-space M associated
to the functor M̆ and the étale covering map M→ M̆rig ([5, pp. 29–30]). Continue with the
definition of the functor AC , that turns out to be the general fibre of the functor AC for max-
imal C and state the representability result for the sheafification AC . Use the uniformization
isomorphism of the previous talk to deduce a rigid version of the uniformization isomorphism
for general C ([5, pp. 30–31]).

Similarly to the proof of [5, Proposition 1.9], we can use the relation between AC and
the rigidification of the unitary Shimura curve to deduce [5, Proposition 1.13]. Again, we
conclude this talk with reformulating the uniformization theorem in terms the rigid pro-
analytic covering space N over N̆ rig ([5, Theorem 1.15]). If time permits, it would be nice to
shed more light on these covering spaces in terms of Ω̂d

E ([12, Section 3], see also the (more
detailed) english translation of [4]). The statement of [5, Corollary 1.16] can be skipped.
Date: July 22, 2016 Speaker: Gebhard Böckle

Talk 12 (Uniformization of Shimura curves after Boutot-Zink).
In this talk, we prove the main result of [5], the uniformization of Shimura curves as mentioned
in the introduction (in particular in a non-moduli situation). Begin with the general setup in
[5, pp. 45–46] and state the main results we want to prove ([5, Theorem 3.1] and [5, Corollary
3.2]). Since we did not introduce the map detN, the second statement in [5, Theorem 3.1] can
be omitted.

The main idea in proving [5, Theorem 3.1] is to embed the Shimura curve into a unitary
Shimura curve of the type considered in Talk 9–11 and to apply our uniformization results
for these Shimura curves ([5, Theorem 1.15]). In order to deduce the theorem, we need to
know more about the connected components of the rigid analytic covering spaces. Begin
with the construction of the division algebra B and the unitary group G• ([5, pp. 47-49]).
The associated unitary Shimura curve admits a p-adic uniformization by [5, Theorem 1.15]
(in order for the notation to work, C is denoted by C• now). Explain how to choose C• in
dependence of C and state the (crucial!) result that our Shimura curve is an open and closed
subvariety of the contructed unitary Shimura curve following [10]. Then use the abstract
properties of detN to deduce the uniformization theorem ([5, pp. 50–52]). For this, the action
of I•(Q) has to be made more explicit as in [5, Lemma 3.3]. The statement of [5, Corollary
3.4] can be skipped.
Date: July 29, 2016 Speaker: Peter Gräf
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