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1 Pollard p − 1 method
Idea: We know by Fermat that ∀c ∈ Z/pZ : cp−1 ≡ 1 mod p and thus

∀M ∈ Z and p − 1 | M : cM ≡ 1 mod p =⇒ p | cM − 1

Now if p | n then p | gcd(cM − 1, n).

Algorithm Basic Pollard p − 1 method
Require: odd number n, search bound B

[Establish prime-power base]
Find the sequence of primes p1 < p2 < · · · < pm ≤ B and
for each such prime pi, the maximum integer ai s.t. pai

i ≤ B

[Perform power ladders]
c = 2; ▷ Actually, a random c can be tried
for (1 ≤ i ≤ m) do

for (1 ≤ j ≤ ai) do c = cpi mod n;
end for

end for
[Test gcd]

g = gcd(c − 1, n);
return g; ▷ We hope for a success 1 < g < n

Remark. • We set M = lcm(B, B − 1, . . . , 1) =
∏

p
ai
i

≤B pai
i .

• The algorithm is successful if the group order #Z/pZ = p − 1 is B−smooth.

• The algorithm fails if gcd(c − 1, n) = 1 or n. Then we can replace c = 2 with some
other integer and increase or lower the search bound B.

2 Basic ECM
2.1 Pseudocurves
Definition 2.1. Let a, b ∈ Z/nZ, gcd(n, 6) = 1 and gcd(4a3 + 27b2, n) = 1. An elliptic
pseudocurve (EP) over the ring Z/nZ is a set

Ea,b(Z/nZ) = {(x, y) ∈ Z/nZ × Z/nZ | y2 = x3 + ax + b} ∪ {On}

where On is the point at infinity and a, b ∈ Z/nZ.

Remark. • If p | n then there exists a mapping

(−)p : E(Z/nZ) → E(Fp)
P = (x mod n, y mod n) 7→ (x mod p, y mod n) = Pp and On 7→ Op

We notice that ker(−)p = On

• If n is composite, E(Z/nZ) fails to form a group since inverse elements are needed
for the slope m giving rise to Lenstra’s ECM.

2.2 The algorithm

Algorithm Lenstra elliptic curve method (ECM)
Require: Composite number n
Ensure: gcd(n, 6) = 1, n not a proper power

[Choose B1 limit]
B1 = 1000 ▷ Or whatever is a practical initial ’stage-one limit’ B1

[Find curve Ea,b(Z/nZ) and point (x, y) ∈ E]
Choose random x, y, a ∈ [0, n − 1];
b = (y2 − x3 − ax) mod n;
g = gcd(4a3 + 27b2, n);
if (g == n) then goto [Find curve ...];
end if
if (g > 1) then return g;
end if ▷ Factor is found
E = Ea,b(Z/nZ); P = (x, y); ▷ Elliptic pseudocurve and point on it

[Prime-power multipliers]
for (1 ≤ i ≤ π(B1)) do ▷ Loop over primes pi

Find largest integer ai such that pai
i ≤ B1;

for (1 ≤ j ≤ ai) do
P = [pi]P , halting the elliptic algebra if the computation
of some d−1 for addition-slope denominator d signals
a nontrivial g = gcd(n, d), in which case return g; ▷ Factor is found

end for
end for

[Failure]
Possibly increment B1;
goto [Find curve . . . ];

Proposition 2.1. Let n ∈ Z, p ∈ P the least prime with p | n and q ∈ P another prime
with q | n, P ∈ E(Z/nZ)

(i) If ∃k ∈ Z s.t.

[k]Pp = Op on E(Fp), [k]Pq ̸= Oq on E(Fq)

then [k]P /∈ E(Z/nZ)

(ii) If #E(Fp) is B1 powersmooth then ECM finds a k ∈ Z s.t. [k]Pp = Op
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Proof. (i) Assume for contradiction that [k]P ∈ E(Z/nZ). Then since ker((−)p) =
On =⇒ [k]P = On, but then ([k]P )q = (On)q = Oq a contradiction.

(ii) In the algo we set

k =
∏

p
ai
i

≤B1

pai
i

Then if #E(Fp) is B1−powersmooth =⇒ #E(Fp) | k and since ord(Pp) | #E(Fp)
(by Lagrange’s theorem) we are finished.

2.3 Complexity analysis
Let p be the least prime factor of n. Let

S = #{n ∈ [p + 1 −
√

2p, p + 1 +
√

2p] | n is B1 − smooth}
N2(S ) = #{(a, x0, y0) ∈ F3

p | b = y2
0 − x3

0 − ax0 : 4a3 + 27b2 ̸= 0, #Ea,b(Fp) ∈ S }

So N2(S ) contains all the triples creating an EC which will give us an successful algorithm.
Then from Lenstra’s Theorem the probability prob(B1) of success is given by

prob(B1) = N2(S )
p3 > c

S
√

p ln p

The expected numbers of applying the step [Prime-power multipliers] until we are successful
can be modelled by a geometric random variable and thus the expected number of such
steps is given by 1

prob(B1) and since it takes about B1 arithmetic steps to perform [Prime-
power multipliers] we get that the expected arithmetic operations until the algorithm is
successful is given by

B1

prob(B1) < C

√
p ln pB1

S

yielding to a complexity estimate B1
prob(B1) that is given by

exp (
√

2 + o(1))
√

ln p ln ln p

Remark. • We do not know p to begin with so we start with a low B1 value of 1000
and then possibly raise this value in Step [Failure]

• the larger the least prime factor of n, the more arithmetic steps are expected

• worst case: n is the product of two roughly equal primes, then the complexity is
L(n)1+o(1) the same as QS (quadratic sieve) where L(n) = exp

√
ln n ln ln n.

3 Elliptic curve primality proving (ECPP)
Theorem 3.1 (Goldwasser-Kilian ECPP theorem). Let n ∈ Z>1 and gcd(n, 6) = 1. Let
E(Z/nZ) be a PC and s, m ∈ Z s.t. s | m. Assume that ∃P ∈ E(Z/nZ) s.t.

(i) [m]P = O

(ii) ∀q ∈ P and q | s we have [m/q]P ̸= O

Then ∀p ∈ P and p | n we have
#E(Fp) ≡ 0 mod s

Moveover, if s > (n1/4 + 1)2 =⇒ n ∈ P.

3.1 Goldwasser-Kilian primality test

Algorithm Goldwasser-Kilian primality test
Require: nonsquare integer n > 232

Ensure: gcd(n, 6) = 1
[Choose a pseudocuve over Z/pZ]

Choose random (a, b) ∈ [0, n − 1]2 s.t. gcd(4a3 + 27b2, n) = 1;
[Assess curve order]

m = #Ea,b(Z/nZ) ▷ if n is prime
[Attempt to factor]

Attempt to factor m = kq s.t. k > 1 and q > (n1/4 + 1)2 a probable prime
but if this cannot be done according to some time-limit criterion,
goto [Choose a pseudocurve . . . ];

[Choose point on Ea,b(Z/nZ)]
Choose random x ∈ [0, n − 1] s.t. Q = (x3 + ax + b) mod n and ( Q

n ) ̸= 1
Find an integer y s.t. y ≡ Q( mod n) if n were prime;
if (y2 mod n ̸= Q)) then return ’n is composite’;
end if
P = (x, y);

[Operator on point]
Compute the multiple U = [m/q]P (however if any illegal inversions occur,
return ’n is composite’);
if (U == O) then goto [Choose point . . . ];
end if
Compute V = [q]U (however check the above rule on illegal inversions);
if (V ̸= O) then return ’n is composite’;
end if
return ’If q is prime, then n is prime’;

Remark. • In practice one repeatedly applies the algorithm to obtain a chain of
numbers with the last number q so small its primality may be proved by trial
division.

• if some intermediate q is composite, then one can retreat one level in the chain and
apply the test again.


