1 Pollard p-1 method

Idea: We know by Fermat that $\forall c \in \mathbb{Z}/p\mathbb{Z} : c^{p-1} \equiv 1 \mod p$ and thus

$$\forall M \in \mathbb{Z} \text{ and } p-1 \mid M : c^M \equiv 1 \mod p \implies p \mid c^M - 1$$

Now if $p \mid n$ then $p \mid \operatorname{gcd}(c^M - 1, n)$.

Algorithm Basic Pollard p-1 method

Require: odd number n, search bound B[Establish prime-power base] Find the sequence of primes $p_1 < p_2 < \dots < p_m \le B$ and for each such prime p_i , the maximum integer a_i s.t. $p_i^{a_i} \le B$ [Perform power ladders] c = 2; \triangleright Actually, a random c can be tried for $(1 \le i \le m)$ do for $(1 \le j \le a_i)$ do $c = c^{p_i} \mod n;$ end for end for [Test gcd] $g = \gcd(c - 1, n);$ return g; \triangleright We hope for a success 1 < g < n

Remark. • We set $M = \operatorname{lcm}(B, B - 1, \dots, 1) = \prod_{p_i^{a_i} \leq B} p_i^{a_i}$.

- The algorithm is successful if the group order $\#\mathbb{Z}/p\mathbb{Z} = p-1$ is *B*-smooth.
- The algorithm fails if gcd(c-1, n) = 1 or n. Then we can replace c = 2 with some other integer and increase or lower the search bound B.

2 Basic ECM

2.1 Pseudocurves

Definition 2.1. Let $a, b \in \mathbb{Z}/n\mathbb{Z}$, gcd(n, 6) = 1 and $gcd(4a^3 + 27b^2, n) = 1$. An elliptic pseudocurve (EP) over the ring $\mathbb{Z}/n\mathbb{Z}$ is a set

$$E_{a,b}(\mathbb{Z}/n\mathbb{Z}) = \{(x,y) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \mid y^2 = x^3 + ax + b\} \cup \{\mathcal{O}_n\}$$

where \mathcal{O}_n is the point at infinity and $a, b \in \mathbb{Z}/n\mathbb{Z}$.

Remark. • If $p \mid n$ then there exists a mapping

$$\begin{split} (-)_p: E(\mathbb{Z}/n\mathbb{Z}) \to E(\mathbb{F}_p) \\ P = (x \ \mathrm{mod} \ n, y \ \mathrm{mod} \ n) \mapsto (x \ \mathrm{mod} \ p, y \ \mathrm{mod} \ n) = P_p \ \mathrm{and} \ \mathscr{O}_n \mapsto \mathscr{O}_p \end{split}$$

We notice that $\ker(-)_p = \mathscr{O}_n$

• If n is composite, $E(\mathbb{Z}/n\mathbb{Z})$ fails to form a group since inverse elements are needed for the slope m giving rise to Lenstra's ECM.

2.2 The algorithm

Algorithm Lenstra elliptic curve method (ECM) **Require:** Composite number n**Ensure:** gcd(n, 6) = 1, n not a proper power [Choose B_1 limit] $B_1 = 1000$ \triangleright Or whatever is a practical initial 'stage-one limit' B_1 [Find curve $E_{a,b}(\mathbb{Z}/n\mathbb{Z})$ and point $(x,y) \in E$] Choose random $x, y, a \in [0, n-1];$ $b = (y^2 - x^3 - ax) \mod n;$ $q = \gcd(4a^3 + 27b^2, n);$ if (q == n) then goto [Find curve ...]; end if if (q > 1) then return q; end if \triangleright Factor is found $E = E_{a,b}(\mathbb{Z}/n\mathbb{Z}); P = (x,y);$ \triangleright Elliptic pseudocurve and point on it [Prime-power multipliers] for $(1 \le i \le \pi(B_1))$ do \triangleright Loop over primes p_i Find largest integer a_i such that $p_i^{a_i} \leq B_1$; for $(1 \le j \le a_i)$ do $P = [p_i]P$, halting the elliptic algebra if the computation of some d^{-1} for addition-slope denominator d signals a nontrivial $q = \gcd(n, d)$, in which case return q; \triangleright Factor is found end for end for [Failure] Possibly increment B_1 ; goto [Find curve ...];

Proposition 2.1. Let $n \in \mathbb{Z}, p \in \mathbb{P}$ the least prime with $p \mid n$ and $q \in \mathbb{P}$ another prime with $q \mid n, P \in E(\mathbb{Z}/n\mathbb{Z})$

(i) If $\exists k \in \mathbb{Z} \ s.t.$

$$[k]P_p = \mathscr{O}_p \text{ on } E(\mathbb{F}_p), \quad [k]P_q \neq \mathscr{O}_q \text{ on } E(\mathbb{F}_q)$$

then $[k]P \notin E(\mathbb{Z}/n\mathbb{Z})$

(ii) If $\#E(\mathbb{F}_p)$ is B_1 powersmooth then ECM finds a $k \in \mathbb{Z}$ s.t. $[k]P_p = \mathcal{O}_p$

(ii) In the algo we set

$$k = \prod_{p_i^{a_i} \le B_1} p_i^{a_i}$$

Then if $\#E(\mathbb{F}_p)$ is B_1 -powersmooth $\implies \#E(\mathbb{F}_p) \mid k$ and since $\operatorname{ord}(P_p) \mid \#E(\mathbb{F}_p)$ (by Lagrange's theorem) we are finished.

2.3 Complexity analysis

Let p be the least prime factor of n. Let

$$\mathscr{S} = \#\{n \in [p+1-\sqrt{2}p, p+1+\sqrt{2}p] \mid n \text{ is } B_1 - \text{smooth}\}$$
$$N_2(\mathscr{S}) = \#\{(a, x_0, y_0) \in \mathbb{F}_p^3 \mid b = y_0^2 - x_0^3 - ax_0 : 4a^3 + 27b^2 \neq 0, \ \#E_{a,b}(\mathbb{F}_p) \in \mathscr{S}\}$$

So $N_2(\mathcal{S})$ contains all the triples creating an EC which will give us an successful algorithm. Then from Lenstra's Theorem the probability $prob(B_1)$ of success is given by

$$prob(B_1) = \frac{N_2(\mathscr{S})}{p^3} > c \frac{\mathscr{S}}{\sqrt{p} \ln p}$$

The expected numbers of applying the step [Prime-power multipliers] until we are successful can be modelled by a geometric random variable and thus the expected number of such steps is given by $\frac{1}{prob(B_1)}$ and since it takes about B_1 arithmetic steps to perform [Prime-power multipliers] we get that the expected arithmetic operations until the algorithm is successful is given by

$$\frac{B_1}{prob(B_1)} < C \frac{\sqrt{p} \ln p B_1}{\mathscr{S}}$$

yielding to a complexity estimate $\frac{B_1}{prob(B_1)}$ that is given by

 $\exp{(\sqrt{2} + o(1))} \sqrt{\ln{p} \ln{\ln{p}}}$

- **Remark.** We do not know p to begin with so we start with a low B_1 value of 1000 and then possibly raise this value in Step [Failure]
 - the larger the least prime factor of n, the more arithmetic steps are expected
 - worst case: n is the product of two roughly equal primes, then the complexity is $L(n)^{1+o(1)}$ the same as QS (quadratic sieve) where $L(n) = \exp \sqrt{\ln n \ln \ln n}$.

3 Elliptic curve primality proving (ECPP)

Theorem 3.1 (Goldwasser-Kilian ECPP theorem). Let $n \in \mathbb{Z}_{>1}$ and gcd(n, 6) = 1. Let $E(\mathbb{Z}/n\mathbb{Z})$ be a PC and $s, m \in \mathbb{Z}$ s.t. $s \mid m$. Assume that $\exists P \in E(\mathbb{Z}/n\mathbb{Z})$ s.t.

(i) $[m]P = \mathcal{O}$ (ii) $\forall q \in \mathbb{P} \text{ and } q \mid s \text{ we have } [m/q]P \neq \mathcal{O}$ Then $\forall p \in \mathbb{P} \text{ and } p \mid n \text{ we have}$ $\#E(\mathbb{F}_p) \equiv 0 \mod s$ Moveover, if $s > (n^{1/4} + 1)^2 \implies n \in \mathbb{P}$.

3.1 Goldwasser-Kilian primality test

Require: nonsquare integer $n > 2^{32}$	
Ensure: $gcd(n, 6) = 1$	
[Choose a pseudocuve over $\mathbb{Z}/p\mathbb{Z}$]	
Choose random $(a,b) \in [0, n-1]^2$ s.t. $gcd(4a^3 + 27)$	$b^2, n) = 1;$
[Assess curve order]	
$m = \#E_{a,b}(\mathbb{Z}/n\mathbb{Z})$	\triangleright if <i>n</i> is prime
[Attempt to factor]	
Attempt to factor $m = kq$ s.t. $k > 1$ and $q > (n^{1/4} + but if this cannot be done according to some time-l goto [Choose a pseudocurve];$	
[Choose point on $E_{a,b}(\mathbb{Z}/n\mathbb{Z})$]	
Choose random $x \in [0, n-1]$ s.t. $Q = (x^3 + ax + b)$ Find an integer y s.t. $y \equiv Q(\mod n)$ if n were prin if $(y^2 \mod n \neq Q)$ then return 'n is composite'; end if P = (x, y);	
[Operator on point]	
Compute the multiple $U = [m/q]P$ (however if any return 'n is composite');	illegal inversions occur,
if $(U == \mathcal{O})$ then go o [Choose point];	
end if Compute $V = [a]U$ (however shear the above rule of	n illogal inversions);
Compute $V = [q]U$ (however check the above rule c if $(V \neq \mathcal{O})$ then return 'n is composite';	m megar mversions),
end if	
return 'If q is prime, then n is prime';	

- **Remark.** In practice one repeatedly applies the algorithm to obtain a chain of numbers with the last number q so small its primality may be proved by trial division.
 - if some intermediate q is composite, then one can retreat one level in the chain and apply the test again.