Lenstra’s ECM and ECPP
1 Pollard p — 1 method

Idea: We know by Fermat that Ve € Z/pZ : ¢! =1 mod p and thus
VMeZandp—1|M:c™=1 modp = p|cM -1

Now if p | n then p | ged(cM — 1,n).

Algorithm Basic Pollard p — 1 method

Require: odd number n, search bound B
[Establish prime-power base]

Find the sequence of primes p; < ps < -+ < p,, < B and
for each such prime p;, the maximum integer a; s.t. pi* < B
[Perform power ladders]
c=2;
for (1 <i<m)do
for (1 <j<a;) doc=cPi mod n;
end for
end for
[Test ged]
g = ged(c — 1, n);
return g;

> Actually, a random ¢ can be tried

> We hope for a success 1 < g <n

Remark. o Weset M =lem(B,B—1,...,1) =] «ippi.
o The algorithm is successful if the group order #Z/pZ = p — 1 is B—smooth.

o The algorithm fails if ged(c — 1,n) = 1 or n. Then we can replace ¢ = 2 with some
other integer and increase or lower the search bound B.

2 Basic ECM

2.1 Pseudocurves

Definition 2.1. Let a,b € Z/nZ,gcd(n,6) = 1 and ged(4a® + 27b%,n) = 1. An elliptic
pseudocurve (EP) over the ring Z/nZ is a set

Eop(Z/nZ) = {(z,y) € Z/nZ x Z/nZ | y* = 2° + ax + b} U {0, }

where 0, is the point at infinity and a,b € Z/nZ.

Remark. o If p | n then there exists a mapping

(=)p : E(Z/nZ) — E(Fp)
P = (2 mod n,y mod n) — (z mod p,y mod n) = P, and 0, — 0,
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We notice that ker(—), = 0,

o If n is composite, E(Z/nZ) fails to form a group since inverse elements are needed
for the slope m giving rise to Lenstra’s ECM.

2.2 The algorithm

Algorithm Lenstra elliptic curve method (ECM)
Require: Composite number n
Ensure: gecd(n,6) = 1,7 not a proper power
[Choose By limit]
B; = 1000 > Or whatever is a practical initial 'stage-one limit’ By
[Find curve E, ,(Z/nZ) and point (z,y) € E|

Choose random z,y,a € [0,n — 1];
b= (y?> — 3 — ar) mod n;
g = ged(4a® + 270% n);
if (9 == n) then goto [Find curve ...J;
end if
if (g9 > 1) then return g;
end if
E =FE.(Z/nZ); P = (z,y);
[Prime-power multipliers]
for (1 <i<wn(By)) do
Find largest integer a; such that pi* < By;
for (1 <j<ua;) do
P = [p;] P, halting the elliptic algebra if the computation
of some d~! for addition-slope denominator d signals
a nontrivial g = ged(n, d), in which case return g;
end for
end for
[Failure]

> Factor is found
> Elliptic pseudocurve and point on it

> Loop over primes p;

> Factor is found

Possibly increment By;
goto [Find curve ...];

Proposition 2.1. Let n € Z,p € P the least prime with p | n and ¢ € P another prime
with ¢ | n, P € E(Z/nZ)
(i) If 3k € Z s.t.
(k] Pp = Op on E(Fy),  [k]Pg # Of on E(F,)
then [k|P ¢ E(Z/nZ)

(it) If #E(Fp) is B1 powersmooth then ECM finds a k € Z s.t. [k|P, = 0,
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Proof. (i) Assume for contradiction that [k]P € E(Z/nZ). Then since ker((—),) =
O, = [k]P = O, but then ([k]P), = (0,)q = Oy a contradiction.

(ii) In the algo we set
k= H Dy
p;i<By

Then if #E(F,) is Bi—powersmooth = #E(F,) | k and since ord(P,) | #E(F,)
(by Lagrange’s theorem) we are finished.
O

2.3 Complexity analysis

Let p be the least prime factor of n. Let
S =#{necp+1—V2p,p+1+V2p||nis By —smooth}
No() = #{(a,0,y0) € IF:;) | b=ys — a3 — axg : 4a® + 270> # 0, #FE,,(F,) € 7}

So No() contains all the triples creating an EC which will give us an successful algorithm.
Then from Lenstra’s Theorem the probability prob(B;) of success is given by
No (S 54

2(3 ) >c

p VvPInp
The expected numbers of applying the step [Prime-power multipliers] until we are successful

can be modelled by a geometric random variable and thus the expected number of such

steps is given by m and since it takes about B; arithmetic steps to perform [Prime-
power multipliers|] we get that the expected arithmetic operations until the algorithm is

successful is given by

prob(By) =

B InpB
L C\/f? nphby
prob(By) 5
yielding to a complexity estimate pmf(lBl) that is given by

exp (V24 0(1))y/Inplnlnp

Remark. e We do not know p to begin with so we start with a low B; value of 1000
and then possibly raise this value in Step [Failure]

e the larger the least prime factor of n, the more arithmetic steps are expected

e worst case: n is the product of two roughly equal primes, then the complexity is
L(n)**°M) the same as QS (quadratic sieve) where L(n) = expvInnInlnn.
3 Elliptic curve primality proving (ECPP)

Theorem 3.1 (Goldwasser-Kilian ECPP theorem). Let n € Z~1 and ged(n,6) = 1. Let
E(Z/nZ) be a PC and s,m € Z s.t. s | m. Assume that IP € E(Z/nZ) s.t.
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(i) (P = &
(i) Yq € P and q | s we have [m/q|P # €
Then Vp € P and p | n we have
#E([F,) =0 mod s

Moveover, if s > (n'/* +1)2 = n eP.

3.1 Goldwasser-Kilian primality test

Algorithm Goldwasser-Kilian primality test

Require: nonsquare integer n > 232
Ensure: ged(n,6) =1
[Choose a pseudocuve over Z/pZ]
Choose random (a,b) € [0,n — 1] s.t. ged(4a® + 270%,n) = 1;
[Assess curve order]
m = #E,(Z/nZ)
[Attempt to factor]
Attempt to factor m = kg s.t. k > 1 and ¢ > (n/* + 1) a probable prime
but if this cannot be done according to some time-limit criterion,
goto [Choose a pseudocurve ...];
[Choose point on E, ,(Z/nZ)]
Choose random z € [0,n — 1] s.t. Q@ = (2® + ax + b) mod n and (%) #1
Find an integer y s.t. y = Q( mod n) if n were prime;
if (y?> mod n # Q)) then return 'n is composite’;
end if

P = (2,y);
[Operator on point]

> if n is prime

Compute the multiple U = [m/q]P (however if any illegal inversions occur,
return 'n is composite’);

if (U == 0) then goto [Choose point ...];

end if

Compute V' = [q]U (however check the above rule on illegal inversions);

if (V # 0) then return 'n is composite’;

end if

return 'If ¢ is prime, then n is prime’;

Remark. e In practice one repeatedly applies the algorithm to obtain a chain of
numbers with the last number ¢ so small its primality may be proved by trial
division.

« if some intermediate ¢ is composite, then one can retreat one level in the chain and
apply the test again.



