1 Motivation

Finding factorization of natural numbers is one of the oldest and most difficult problems in mathematics. In this talk, we discuss the **Number Field Sieve**, which is computationally one of the fastest algorithms to give a prime decomposition of an integer.

The main idea of the Number Field sieve is the following lemma:-

Lemma. Let n be a natural number. If $a, b \in [0, n - 1]$ s.t. $a \pm b$ is not divisible by n and $a^2 \equiv b^2 \pmod{n}$. Then g.c.d(n, a - b), g.c.d(n, a + b) > 1 and n = g.c.d(n, a - b)g.c.d(n, a + b).

There are possibly two ways to find a, b as in the lemma above - the first one is called the *Quadratic Sieve*; and the other one is the *Number Field Sieve*. The procedure that both these sieve's employ is very similar but the Number Field sieve is the better algorithm for large numbers.

2 Strategy

The strategy of the *Number Field Sieve* to obtain factorization of a positve integer n by finding a, b as above, is as follows:- *Choose the ring of integers* \mathcal{O} of a number field *s.t. there are* $\theta_1, ..., \theta_n \in \mathcal{O}$ and a ring homomorphism $\phi : \mathcal{O} \to \mathbb{Z}/n\mathbb{Z}$ satisfying the property that $\theta_1...\theta_n$ is a square, $u^2 \in \mathcal{O}$, and $\phi(\theta_1)...\phi(\theta_n)$ is a square, $v^2 \in \mathbb{Z}/n\mathbb{Z}$.

3 Exponent vectors

We will try to choose our θ_i 's as above, from the list $\{a - b\alpha\}$, where α is a suitably chosen **algebraic integer** and a, b are co-prime numbers. We also choose a B s.t. $N(a - b\alpha)$ is **B-smooth**. If $f(x) \in \mathbb{Z}[x]$ is the minimal polynomial of α , then we will define the **exponent vector**

$$\vec{v}(a-b\alpha) := (exp_p(N(a-b\alpha)))_{p,r}$$

where (p, r) runs over primes p and $r \in [0, p - 1]$ s.t. p|f(r). Following is the crucial theorem:-

Theorem. If S is a set of pairs of co-prime numbers (a,b) s.t. $N(a - b\alpha)$ is B-smooth. Then if $\prod_{(a,b)\in S} (a-b\alpha)$ is a square in O, then

$$\sum_{(a,b)\in\mathcal{S}} \vec{v}(a-b\alpha) \equiv 0 (\mod 2)$$

4 Obstructions

The above theorem provides us a necessary condition for a product of algebraic integers to be a square but there are some strong theoretical obstructions to the converse. We will discuss them and prove two important results which helps us evade these obstructions, *atleast computationally*.

5 Complexity analysis

From the discussion on obstructions, it is clear that the algorithm we are presenting is *heuristic*. So rather than finding time complexity of the algorithm, which depends on many parametrs being used so far (like the Bfor the B-smooth numbers, the algebraic integer chosen etc.), we will find these parameters so that the time complexity of the heuristic algorithm we present is, *the minimal one*.

6 Square roots

Even after obtaining the θ_i 's and the homomorphism ϕ as above, we are not done yet!! We still need to find the square roots of the $\prod \theta_i$ and $\prod \phi(\theta_i)$. We will use the **Hensel's** *lemma* to resolve this issue quite efficiently.

7 Summary algorithm

We will finally present the algorithm and go through an example using the https://github.com/radii/msieve.git.