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1 Motivation

Here, let all rings be commutative with 1.
We want to understand the ring of integers Z, which
has many strong properties, mainly being a principal
ideal domain (PID). This is untrue for many extension
of Z : Z[

√
−6], would be an example. Here we can con-

sider the equation 25 = 52 = (1+2
√
−6)(1−2

√
−6). We

have two different decompositions of 25 into irreducible
elements.
To substitute the unique factorisation property of Z with
another one for algebraic extension of Z is the main mo-
tivation in basic algebraic number theory.

2 Rings of Integer

Subject of algebraic number theory are rings of integers
in number fields (algebraic extensions of Q). The ring
of integers OK ⊂ K is defined as the integral closure of
Z in the field K, meaning that it contains all algebraic
elements of K that are zeros of polynomials of the form:

1 ·X l + al−1X
l−1 + · · ·+ a1X + a0, ai ∈ Z.

The simplest ring of integers is Z ⊂ Q. Understanding
rings of integers helps us to understand elliptic curves
and integer equation, since as it turns out, the factori-
sation in these rings gives solutions to integer equations.
We will see that in the case of Q(

√
·) the ring OK will

always contain Z[
√
·] which is what we want. In general

OK will be larger.

3 Arithmetic on Ideals

Ideals in a ring can be added, multiplied and divided in
the following way:

a+ b = {a+ b|a ∈ a, b ∈ b}

a · b = {
∑

aibi|ai ∈ a, bi ∈ b}

We say that a|b if and only if ∃c ⊂ A : a · c = b. The
following are equivalent:

a ⊂ p ⇔ p|a.

3.1 Fractional Ideals

A Z−submodule a =< k1, . . . , kl >Z⊂ K is called a frac-
tional ideal. We also see that Oa = a. Thus O acts as a
1 on the set of ideals.
The fractional ideal a∗ = {x ∈ K|x · a ⊂ O} may be
considered the inverse of a in K : a∗ab = Ob = b.
Thus the set of fractional ideals forms an abelian group:
JK = {a fract. ideal in K}. Note that by definition all
”normal” ideals O are also fractional ideals!

4 Prime Ideal Factorisation

Consider a noetherian domain A that is also integrally
closed, where every prime ideal is also maximal. These
rings are called Dedekind domains. They have the prop-
erty that every ideal a ̸= (0), (1) in A has a unique fac-
torisation into prime ideals, completely analogous to the
factorisation into prime elements in Z.

a = pv11 · · · pvnn , vi ∈ N0.

We now replace the arithmetic of numbers in for example
Z[
√
·] =: B with arithmetic on ideals, just by considering

instead of x ∈ B, the ideal (x) ⊂ B.
Another useful fact is that all the integer-rings of finite
algebraic extensions of Q are always Dedekind domains:
OK ⊂ K,K|Q has unique PIF.

5 The Class Group

By considering the group JK that was introduced in (3.1)
we can ”measure” how much any Dedekind domain dif-
fers from a principal ideal domain (PID), which is in
some way the ”ideal situation” to do number theory in.
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We find a subgroup PK ⊂ JK that is made up of the frac-
tional principal ideals. We consider the quotient group
ClK = JK/PK that will be trivial if and only if all frac.
ideals in K, and thus all ideal in O, are already princi-
pal.
With some extra construction we can prove that this
group will always be finite.

5.1 Consequence of the Finite Class
Group

For every number field K|Q, there exists a finite exten-
sion L|K, which has ring of integers OL ⊂ L that is
principal. That means that every ring of integers is only
finitely many adjoined elements away from being a prin-
cipal ideal domain.

6 Units of OK

By replacing the arithmetic of numbers in these rings
with the arithmetic of ideals, we lose all information on
the units in the ring:

1 → O× → K× → JK → ClK → 1.

This sequence is exact, meaning here that O× ↪→ O ∈
JK , which as we recall is the neutral element in JK . Ex-
actness implies that the units of O are exactly the kernel
of the map that ”replaces” the arithmetic of numbers
with ideals.

We can however recover this information with the

6.1 Dirichlet Unit Theorem

This theorem gives the structure of the unit group O× ⊂
O for a given ring of integers O ⊂ K|Q.

O× ∼= µ(K)⊕ Zr+s−1.

The numbers r, s depend on the way we have to embed
K into C. If the algebraic numbers adjoined to Q to
get K are complex, one has to use complex embeddings
K → C, these always come in pairs, while real embed-
dings don’t. Explicitly: when computing the units of a
specific ring of integers, we find r+ s− 1 units ϵi so that
we can write every unit of O as

ε = ζϵv11 · · · ϵvr+s−1

r+s−1 , vi ∈ Z,

where ζ is some root of unity that is contained in K|Q.
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