ON THE ENDOMORPHISM ALGEBRA OF ABELIAN VARIETIES
ASSOCIATED WITH HILBERT MODULAR FORMS

ALIREZA SHAVALI

ABSTRACT. In this article, we will generalize an explicit formula proved by Quer
for the Brauer class of the endomorphism algebra of abelian varieties associated
to modular forms of weight 2 to the case of Hilbert modular forms of parallel
weight 2, under the condition that the degree of the base field over QQ is an odd
number.

1. INTRODUCTION

Let K be a totally real number field such that [K : Q] is odd and let f be a
non-CM (Hilbert) newform of parallel weight 2, level N where N is an ideal of Og
and finite central character e. It is well-known that in this case one can use Shimura
curves to construct an abelian variety Ay over K associated with f. Let T} be the
Hecke operator at p and ay the eigenvalue of T, acting on f. Then E = Q({ay},) is
a number field called the Hecke field of f. The abelian variety Af/K is of dimension
d = [E : Q] and hence its f-adic Tate module (after tensoring with Q) V; is of
dimension 2d over Qy. One can define an E-structure on this Tate module by letting
ap act via the Hecke operator at p. This turns V; into a rank 2 free module over
E ®g Q endowed with a continuous G k-action. This is the Galois representation
associated with f which after a choice of basis can be written as:

pre: Gx — Autg(Vy) ~ GL2(E ®g Q)

It is easy to see that this Galois representation is unramified outside ¢N and for any
unramified prime ideal p, the Eichler-Shimura relation implies that the characteristic
polynomial of py¢(Froby) is equal to X2 — apX + €(p)Nm(p). In particular, {ps,}e
is a compatible family of Galois representations.

In appendix B of [7], Nekovai studies the image of the Galois representation
associated with a Hilbert modular form (not necessarily of weight 2) and generalizes
results of Ribet [9] and Momose [0] to this case. He constructs a division algebra
D over a subfield F' of the Hecke field E which describes the image up to p-adic
openness. In the special case where one knows there is an abelian variety associated
with f (in particular f is of parallel weight 2) F' is equal to the center of the algebra
X = Endg(Af) ®2 Q [7, B.4.11] and since Ay is of GLo-type over K and f is
non-CM, it is a Ribet-Pyle abelian variety, i.e. F ~ Endg(Af) ®z Q is a maximal
subfield of the simple algebra X [5, Propposition 3.1]. Moreover, D and X have the
same class in the Brauer group of F' [7, B.4.11] and D is the Mumford-Tate group
of Ay . It is natural to ask, if one can find explicit formulas for this class in the
Brauer group in terms of the Hecke eigenvalues of f. When K = Q, Quer was able
to prove such a formula [8]. This was later generalized to higher weights in [1] for
the endomorphism ring of the motive associated with the form.
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Quer’s result is about classical modular form. In this paper, we will generalize his
result to Hilbert modular forms of parallel weight 2 over any odd degree extension K
of Q assuming that the central character € is trivial. In section 2 we will generalize
a theorem of Ribet [10, Theorem 5.5] to our situation. This is the main arithmetic
input in the proof of Quer’s formula. Ribet’s proof works without much change
but we will repeat the arguments for the convenient of the reader and because this
does not seem to be written down in the literature in this case. In section 3 we
will generalize [10, Theorem 5.6] using the work of Chi [2]. Here some of the Galois
cohomology computations become more complicated due to the fact that our base
field K is not contained in the field F', whereas the case of classical modular forms.
Therefore one needs to carefully go up and down between some base fields to be
able to carry out the computations. Finally, in section 4 we are able to prove Quer’s
formula in our setting.

Acknowledgments. I would like to thank Gebhard Bdéckle, Andrea Conti and
Judith Ludwig for many valuable discussions about this work. This research was
supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collabora-
tive Research Centre TRR 326 Geometry and Arithmetic of Uniformized Structures,
project number 444845124.

2. ENDOMORPHISM RING AND GALOIS REPRESENTATION

The main goal of this section is to generalize [0, Theorem 5.5.] to the case of
Hilbert modular forms. Ribet uses Faltings’ theorem on isogenies (Tate conjecture)
to relate the endomorphism algebra X to the Tate module. We will do the same
thing and closely follow Ribet’s arguments. We will keep the assumptions and the
notations from the first paragraph of the introduction.

Choose a prime number ¢ that splits completely in £. Then one has d different
embeddings ¢ : E — Q. Let M be a finite Galois extension of K such that all of
the endomorphisms of Ay are defined over M. Now by Faltings’ isogeny theorem
one has

(1) X ®q Q¢ = Endg,[c,,1(V2)

Remember that V; also carries an E-structure through the Hecke action. Every
embedding ¢ of F into Qy gives a F ® Q,; -module structure on Q, with respect to
which we can define

Vo = Vi®Eg0,,c Qo

which is a Qg-subspace of V; of dimension 2 that is invariant under the action of
Gg. Now note that a € E acts on V, via multiplication by o(a) € E hence for two
different embeddings ¢ and 7, V, and V; have trivial intersection as subspaces of V.
This (together with obvious dimension reason) gives a decomposition

Vvﬁ = (‘B Vcr

o:E—Qy
of Q¢[Gk]-modules. The following lemma will be useful later.

Lemma 1. For each embedding o one has Endg,(g,,1(Vo) = Q¢ In particular, V;
is absolutely irreducible as a G pr-representation.
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Proof. From (1) one has X ®q Q; = Endg,[g,,](V¢). Since £ is a maximal subfield
of X, taking the centralizer of ¥ ® Q, of both sides one gets
E®q Qe = Endggg,a,1(Ve)
which means
®oQr = ®,Endg,c,,1(Vo)
which implies the first part. Since V, is semi-simple by Faltings’ proof of the Tate
conjecture, irreducibility follows immediately. O

For every prime p of Ok not dividing /N, recall that Frob, action on V, has
characteristic polynomial

X? — apX + e(p)N(p) € E[X]
therefore, for every embedding o : £ — Q, one has
tr(Frob, C V) = o(ay) € Q¢

Restricting the compatible family of Galois representation to Gps, one gets another
compatible family, namely for every finite place v of M not dividing /N there is
t, € E such that

tr(Frob, C V,) = a(t,) € Qp
Let ¥yn be the set of finite places of M not dividing /N and L = Q(t, : v € Xyn) <
E. Then one has the following:
Lemma 2. The center of the algebra Endg,q,,1(Ve) is L ®q Q-

Proof. First note that by Faltings’ theorem

E®Q = End@g[GK](Vf) - End@e[GM](w)

and since £/ ® Qy centralizes itself, it should contain the center of Endg,[g,,(V)-

By Semi-simplicity of Vp, one can see that V, and V. are isomorphic as G-
representations if and only if they have the same Frob,, traces for all places v of M
not dividing ¢N or equivalently o and 7 agree on L. Now let v : L — Q; be an
embedding and define

Va/ = (—Bg‘ L:’YVU
So one has the decomposition V' = @V, and also since there is clearly no non-trivial
endomorphism from one V, to another one also has the decomposition

Ensz [G ] (Ve) = EB’YEnd@z [Ga] (V"/)

Now let a € L. Then a acts on V; by o(a) hence it acts on the whole subspace V
by the scalar v(a) € Q; which means (because of the decomposition above) it’s in
the center of Endg,[q,,1(Vz). So the E-algebra structure on Endg,[q, (V) induces
this L-algebra structure on Z(Endg,[¢,,(V¢)) which means it’s enough to prove

Z(Endg,ay (Vi) = L®Q
as L-algebras. This is easy to check:

Z(End@e[GM](Ve)) = Z(@’)’End(@z[GM](V’Y)) = @WZ(EndQe[GM](V’Y)) ~ @,Qr = LOQ
O

Corollary 1. L is the center of X, i.e. L = F.
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Proof. Recall that from Faltings’ isogeny theorem we had

X ®o Q= End@g[GA{](W)
Now from the last lemma:

L ®@Z = Z(EndQé[GM](Vf)) = Z(X @Q QE) =F @Qe
which implies F' = L. 0

Lemma 3. If 0,7 : E — Qg are embeddings that agree on F then there exists a
character ¢ : Gg — Q; such that V, ~ V. ® ¢ as representation of Gg.

Proof. From the proof of lemma 2 we know that since o and 7 agree on F' = L, V,
and V- are isomorphic as representations of Gp;. So we can choose two bases for V,
and V; such that the homomorphisms p, : Gg — GL2(Qp) and p; : Gx — GL2(Qy)
associated with V, and V; are equal on Gj;. Now define

o(9) == p; ' (9)p-(9)

A priori ¢ is just a map ¢ : Gxg — GLy(Qg) which is trivial on Gj;. We want to
prove that it is actually a homomorphism with values in the center (hence actually
a character).

Let g € Gk and h € Gy;. Note that p,(h) = p,(h) and p,(ghg™') = p,(ghg™!)
since Gy is normal in Gg. Now the following computation shows that ¢(g) =
ps'(9)p-(g) commutes with p(h):

05 (9)p=(9)p+(R) = p;(9)p-(gh) = p5 (9)pr(ghg™")p+(g)

= po(97 ) pa(ghg™ Npr(9) = po()p5 " (9)p+(9) = pr(R)p5 " (9)p+(g)
Now since Endg,[q,,](V7) = Q¢ we are done. O

Corollary 2. Using the notation of the last lemma, ¢* = :—E and for any prime p

of K of good reduction for Ay, one has

o(ap) = ¢(Froby)7(ayp)
Proof. Note that V, ~ V; ® ¢. Taking determinants of both sides one gets the first
part and taking trace one gets the second part. O

Ribet also proves that in the K = Q case, the field F is generated by {a2/e(p)}pn-
This is also true in our case. In fact, by [7, B.4.11] F' is exactly the field fixed by
inner-twists and the above result is known in much more generality in this context
by the results of [3].

Proposition 1 (]3], Corollary 4.12). The field F is generated over Q by numbers
ap/e(p) forpt N.

Now let 0 € Gk, then o acts on the Q-endomorphisms of Ay by o(¢)(z) =
o(¢(oc~1z)) and this linearly extends to an action on X. F is clearly invariant under
the action of G on X (we are identifying £ with the maximal subfield of X). Since
this is an automorphism of F-algebras, By the Skolem-Noether theorem the action
of o is given by conjugation by some element a (o) € X. Since F is invariant under
the Galois action, a(o) commutes with E and therefore a(o) € E because E is
a maximal subfield and hence its own centralizer. The next theorem relates the
map « which is of geometric (motivic) nature to the (automorphic) data of Hecke
eigenvalues.
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Theorem 1. For every o € G one has a(o)?/e(a) € F*. Moreover, for every
prime ideal p of Ok away from LN, if ay, # 0 then a(Froby) = a, modulo F*.

Proof. As usual, let £ be a prime number that splits completely in E. It enough to
prove that for every pair of embeddings o and 7 of E in Qy that agree on F' one has
o(a?/e) = T(a?/e).

Now if o and 7 agree on F then by lemma 3 there exist a character ¢ : Gxg — Q/
such that V, ~ V. ® ¢ as representation of Gg. In particular, it implies that as
1-dimensional representation of G one has

Hong[GM] (VU, VT) >~ Qb

Also note that if ¢ and 7 don’t agree on F then they are not isomorphic as G-
representation hence

Hom@tz[GM](VU’ V;') =0
Therefore we can completely understand X ® Qy:

End}; (A;) ® Qp ~ Endg, (¢,,1(®V5) = @s-Homg,(c,,1(Vs, Vr)

Now remember that on the LHS, g € Gk acts via conjugation by «a(g). Hence, it
acts on V, and V; by o(a(g)) and 7(a(g)) respectively. Now assume that o and 7
agree on F. Then g acts on Homg,(¢,,1(Vo, V7) by o(a(g))/7(a(g)). On the other
hand as a representation of Gk this is just ¢ so o(a(g))/7(a(g)) = ¢(g). Since
»? = i—: one deduces that o(a?/e) = 7(a?/e) and the result follows.

For the second part, first notice that

6(Froby) = o(a(Froby)) /T (a(Froby)) = o(ay)/(ay)

therefore
o(a(Froby)/ay) = 7(c(Froby)/ay)
which implies the result. O
3. TWISTED ALGEBRAS AND GALOIS COHOMOLOGY
The goal of this section is to prove an analogue of [10, Theorem 5.6] in our setting.

Ribet uses a result of Chi to prove this theorem. In [2], Chi studies the twists of
a central simple algebra by a 1-cocycle. We need to review some of his results and
generalize some of those to our setting.

First note that the endomorphism ring End@(A ) acts on the space of differential

1-forms on A¢/Q (which we denote by Q}@) via pull back. For an endomorphism ¢
and a 1-form w we use the usual notation ¢*w for this action. This action linearly

extends to an action of X on this space and we use the same notation for this action
as well. Also, note that for any 0 € G and ¢ € X one has

(2) o(¢*w) = (09)"(ow) = (a(0) - ¢ - (o)1) *(ow)

For ¢ and 7 in Gk, define cy(0,7) := a(o)a(t)a(or)™!. This commutes with
every element in X so it lands in F. Therefore « gives a well-defined group homo-
morphism

EX
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Let api be the restriction of ax to Grr. We sometimes use the same notation to
denote the composition of this map with the canonical map to (EK)*/(FK)*:
E* (EK)*
:Grpg > — —
arK  GFK = 73 (FK)"
Let Xpg := X ®r FK. This is an algebra over FK. Note that every element in
FK is a sum of the form ), fik; for f; € F and k; € K so Xpg is generated by pure
tensors of the form ), ¢; ® k; for k; € K.
As in [2] one can look at the twist of this algebra with (the 1-cocycle defined by)
a which we denote by Xpg(ark) following Chi.

Proposition 2 ([2], Proposition 1.1). One has
dimpg XFK(CVFK) =dimprg Xrrg = dimpX
and Moreover B B
Xrr(ark) ®rx Q ~ Xrr ®rk Q
Therefore, Xpx(ark) is a central simple F K -algebra.
One can also view Xpg as a K-algebra and twist it with a instead to get the K-

algebra Xpp (o). Let us recall the definition of this algebra. First for any o € G

we define the twisted action of o on Xp K ®K Q as follow. On pure tensors of the
form ¢ Rk ® A for p € X, ke K and A € Q we define:

tw(o) - (¢@k®N) := alo)pa(o) Rk a(N)

Note that k = o(k) in the above expression. Now we define:

Xpi(ak) = (Xrk @k Q)"(@x)
This K-algebra also has the structure of an F K-algebra via a-> 1, ®\; := > ah; @\,
for a e FK, ;€ Xrg and \; € Q.

Proposition 3 ([2], Proposition 1.2). One has Xri(arr) ~ Xpr(ak) as FK-
algebras.

This implies that Xpg(ax) = (Xrx ®r @)tw(GK) is also a central simple F K-
algebra. From now on we simply write Xpg () for this central simple algebra.
FE is a subfield of Xpg. Let L be a maximal subfield of Xzg containing £. Then
L contains FK as well. So one can look at apk as a group homomorphism
LX
G = ———
ark : GFK (FE)"
which has values in E. Now one can apply [2, Proposition 2.4] to get:
Xrx(ark) ®rkx Endrx L ~ Xpix @rkx Endryx L(ark)

So in the Br(FK) one has
[Xrk(a)] = [Xrk] + [Endpr L(ark)]

From this point onward, we assume that the central character € of f is trivial. In
the general case, one also needs to carry the 2-cocycle ¢, = [Endpg L(¢€)] in the
calculations as in [%] which complicates some of the computations. Having this
assumption, now we can prove:

Lemma 4. Assuming € is trivial, the order of [ Xpk ()] in Br(FK) divides 2.
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Proof. So far we proved

[Xrr ()] = [Xrk] + [Endri L(ark)]

in Br(FK). By [7, Proposition B.4.12] we know that X and hence Xpg have Schur
index dividing 2. Also from theorem 1 we know that o = € modulo F'*. Applying
[2, Proposition 2.2] we get:

2. [EndFKL(aFK)] = [EndFKL(Oz%K)] = [EndFKL(e)]

Since € = 1 we are done. O

From section 2 of [2] we know that [Endrx L(ark)] in Br(FK) = H*(Grr, Q) is
the same as the image of the cohomology class defined by a in HY(G g, PGL,(Q))
under the connecting homomorphism

§ : H'(Gri, PGL,(Q)) —» H*(Grk,Q)

where n = [L : FK|. More concretely, one can view every ¢ € L as an FK-linear
endomorphism ¢ : L — L given by multiplication by ¢. So every £ can be viewed as
an n X n matrix with F'K-entries. Now viewing every a(o) € E as such a matrix,

conjugation by this matrix gives an element in PGL,(FK) ¢ PGL,(Q). This gives

1-cocycle with PGL,,(FK) or rather with PGL,(Q) values that is invariant under
the Grg action. Since the connecting homomorphism § sends a 1-cocycle f to
f(a)a(f(7))f(o,7)~! one concludes:

Corollary 3. Let co(0,7) = a(o)a(t)a(or)™! be a 2-cocycle for the trivial action
of Gk on F*. Then the image of [co] under the sequence

H*(Gk, F*) ™5 HY(Gpg, F*) “5> H*(Grk, Q")
is exactely the class of [Xrr ()] in H*(Grk,Q) = Br(FK)
Corollary 4. In Br(FK) one has:

[Xrr(a)] = [Xpi] + te(res([cal))

Our next goal is to prove that Xpg («) is trivial in the Brauer group. The main
ingredient is the next proposition.

Proposition 4. Xpk(a) acts (linearly) on QL.

Proof. First, we defined an action of Xrx ® Q on Q}@ by extending the action of X
linearly, namely we define:

(P® kRN *w := kAp*w
forge X, ke K and A€ Q. Now using (2) one easily sees that for any o € G and
Ve Xprk ®@Q:

o(P*w) = (tw(o) - ¥)*ow
which means that if 1) is invariant under the twisted Galois action and w is invariant

under the usual Galois action, then 1 *w is also invariant. This means that Xpx (o)
acts on QL. O

Proposition 5. Xpi(«a) € Br(FK) is trivial.
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Proof. Let Xpg(a) = M, (D) for some division algebra D over FK of dimension
s2. By corollary 4 one has s[2. Now dim Xpg(a) = n?s? which should be equal
to the dimension of X over F' therefore ns = [E : F]. By the last proposition Q}-
is a M, (D)-module. So there is a D-vector space W such that QL ~ W”. The
dimension of Q) over K is equal to the dimension of the abelian variety A 7 which
is [E': Q]. Hence
E ns|F :
s2 = dimpg D|dimpg W = n[[FK%{] - n[FS[ . :\@1(] — s[F K :Q]

This implies s|[F n K : Q] but since s|2 and [K : Q] is odd, one has s = 1. O

From proposition 5 and corollary 4 and the fact that [Xpx]| € Br(FK) has order
dividing 2, one deduces:

Corollary 5. In Br(FK) one has
[XFr] = valres([cal))

Now we need to go down from F'K to F' to compute the class [X] in Br(F') using
a. We can use the corestriction map to do so. First note that by the last corollary
we know that following the below diagram, the image of [¢o] in H2(Gpr, F') is
[XFr] which is the image of [ X ] under the restriction.

[Ca] € H2(GK,F*> — HQ(GFK,F*)
[X]e H*(Gp,F') ——5— H*(Gpi, F)
This means that
tx(res([cal)) = res([X])
On the other hand, corores = [FK : F|] = [K : F n K] which is an odd integer.
Since X has order dividing 2 in the Brauer group, cor(res([X])) = X.

Finally, we can conclude the generalization of [10, Theorem 5.6] to the case of
Hilbert modular form (with trivial central character):

Corollary 6. In Br(F) one has
[X] = cor(ux(res([cal)))
4. COMPUTING THE BRAUER CLASS

Now we have all the ingredients to generalize [3]. The proof is essentially the
same. First notice that from theorem 1 (and the assumption € = 1) we know that
a? is trivial, hence

o G — F*J(F*)?
is a homomorphism. Let N be the finite Galois extension of K associated with
its kernel, i.e. ker(a?) = Gy. Since Gal(N/K) ~ Im(a?) < F*/(F*)? is a 2-
torsion group, one has Gal(N/K) ~ (Z/27Z)™ for some positive integer m. Therefore,
N = K(\/t1,...;A/t;) for some t; € K and if one defines o; € Gal(N/K) with the

relations
oi(y/1) = (~)/
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then oy, ..., 0, form an Fo-basis for Gal(N/K).
Lemma 5. In Br(FK) on has:

ve(res([ca])) = (t1, (1)) (t2, @(02)?) -+ - (tm, @(om)?)
where (a,b) = (a,b)px denotes the Hilbert symbol.

Proof. First notice that since a(o)o(a(7))a(or)~! is a coboundary, the 2-cocycle
: : a(r)
[ca] is also given by the formula (o, 7) — ECR

For each 7 € G let

T(VE) = ()" OV
Then z; : Gx — 7Z/27 is clearly a group homomorphism. Similarly let y; : Gpx —
7,/27 be the homomorphism given by
(o)) = (=1)¥“a(o;)
for 0 € Gpi. Now since {o;}"; provides an Fy basis for Gal(IN/K), every element

()

7 € Gk can be written as n [[/2, o;""") where n is in Gy = ker(a?). Applying o to

both sides one gets

(1) = H a?(;)* ) (mod F*?)
i=1
which implies

a(r) = A] J o)
i=1

For some A\ € F*. Now one can use this to give a description of [¢,]. Applying
o € Grk to the both sides one has

o(a(r)) = )\Ha(a(ai))xi(ﬂ - AH(_]_)yi(U)mi(T)a(O-i)xi(T) = a(7) H(_l)yi(o)wi(ﬂ
i=1 ' '

which gives the description

—_

for 14(res([ca])) in Br(FK). Now, it is well-known that the 2-cocycle (—1)¥:(@)®i(7)
is represented by the Hilbert symbol (t;, a?(c;)) so we are done. O

.

From [7] we know that ' ~ Gal(E/F) is the group of inner-twists of the form f.
Namely, for each o € Gal(E/F) there exist a unique character y, : Gxg — C* such
that x, ® f = 2 f. This is equivalent to saying that for every finite place p of K not
dividing N one has

Xo (Froby) - ay = o(ay)
where ay, is the p’th Fourier coefficient (Hecke eigenvalue) of f.
Lemma 6. The characters xo, appearing in the inner-twists are exactly characters

of Gi that factor through Gal(N/K). In partcular, the number of the inner-twists
of f is 2™.
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Proof. First, we prove that all x,’s are trivial of Gy = ker(a?). The Sato-Tate
conjecture for Hilbert modular forms is known by [I]. This implies that the set
of prime ideal p of O for which a, # 0 has density 1. Then by Chebotarev’s
density theorem the Frobenius elements of these primes are dense in G, therefore
it’s enough to check that x, is trivial on the elements of the form Frob, € G that
are in the kernel of a2 and ay, # 0.

Now if ay # 0 then by theorem 1, a?(Froby) = ag modulo F*2. Hence, if Frob, €
ker(a?) then a, € F. This implies that y,(Froby) = 1 by the definition of an
inner-twist. So we are done.

To prove that these are all such characters it’s enough to prove that the number
of character factoring through Gal(N/K) is equal to the number of the inner-twists.
The group of character factoring through Gal(N/K) is the dual group of Gal(N/K)
and since this is abelian it has exactly 2% elements. Then by Chebotarev’s density
theorem the density of primes p (with a, # 0) that Frob, € G or equivalently
ap € I’ is 2%”

Now, notice that if (o, x,) is an inner-twist then by definition x,(Froby) - a, =
o(ay). So all x,’s are trivial on Froby if and only if a, € F. Also, since ag e F for
all p, x2 = 1. By [7, Proposition B.3.3] I is a finite 2-torsion abelian group. Hence,
I' ~ (Z/2Z)" for some n. Clearly, n < m since x,’s factor through Gal(N/K). Now
choose an Fy basis 01, - o™ for T' = Gal(E/F). Let Gy be the intersection of
kernel of all x,’s which is equal to the intersection of the kernel of all x_)’s. Now
by Chebotarev’s density theorem M = N because they contain the same Frobenius
elements of Gg. Since Gy is the intersection of kernel of x_ ¢ ’s which are all of

order 2, one deduces that n = m. This implies n = m and we are done.
O

By the last lemma, the group of characters y, is the dual group of Gal(N/K) ~
(Z/)2Z)™. Recall that {o}? ; is an Fy basis for Gal(N/K) satisfying o;(\/t;) =
(=1)%/t; where N = K(v/t1,...,\/tm). Now let M) ... o(™) be a dual basis for
this (so each o appear in an inner-twist), i.e.

o (a;) = (—=1)%9,

Notice that the fixed field of ker(c\7)) is just K (,/%;).
Recall that we need to apply the corestriction map to get back over F' and find a
formula for [X] in Br(F'). The following well-known lemma helps us to do that.

Lemma 7 ([11], Exercise XIV.2.4). Let L/F be a finite separable extension and let
cor : Br(L) — Br(F) be the corestriction map. Then for any a € L* and be F* one
has

cor(a,b)r, = (N r(a),b)r

Now we can finally state and prove our main theorem. Note that for any finite
place p away from NN one has ag € F by proposition 1.

Theorem 2. Let p1,--- ,pm be a set of prime ideals of O not dividing N and
with ay, # 0 such that o; = Froby, in Gal(N/K) (such primes exist by Chebotarev’s
theorem). Then In Br(F) one has:

[X] = (Nek/r(th),a5,) (Npg p(ta), ag,) - (Npkp(tm), ap, )
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where (a,b) = (a,b)r denotes the Hilbert symbol.

Proof. Using lemma 5 one only needs to notice that oa(Frobpz.)2 = agi modulo F*2,
so they only differ by a square which doesn’t affect the Hilbert symbol. Therefore:

va(res(ea]) = (1,02, )(t2,02,) -+ (tm. a2, )
Now one applies to corestriction map to both sides. The left hand sides gives us [X]
by corollary 6 and the right hand side give us

(Nrk/p(t), a5, ) (Npkp(ta), ap,) - - (Npgp(tm), a, )

2

o € I This proves the statement of the theorem.

g

by the previous lemma, since a
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