Numerical techniques for modeling relativistic hydrodynamics

in Astrophysics and Cosmology

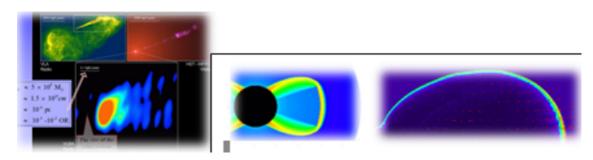
FS2025/Physik/Universität Basel

Ahmad A. Hujeirat

A.Hujeirat@unibas.ch/AHujeirat@iwr.uni-heidelberg.de

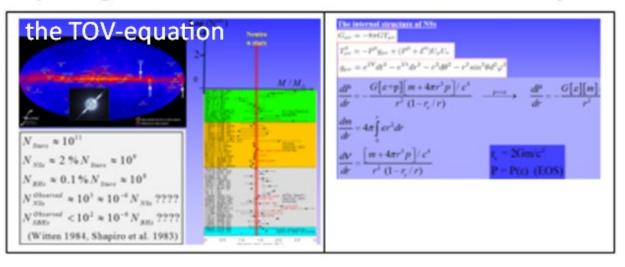
Course content:

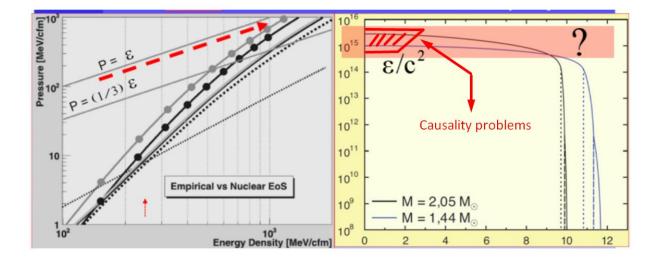
- C1: Basic properties of fluids and plasmas in astrophysics
 - ✤ Ideal versus dissipative fluids
 - Euler and the Navier-Stokes equations
 - Compressible, weakly compressible and incompressible fluid flows
 - Magnetohydrodynamics
- C2: Numerical methods in hydrodynamics
 - The equations in the finite space
 - Conditionally versus unconditionally stable numerical schemes
 Explicit & implicit formulation
 - Preconditioning techniques and defect-correction iteration procedure
- **C3**: Introduction to programming and computer-solving simple equations
- **C4**: Introduction to General Relativity & Relativistic Cosmology
 - A brief derivation of the relativistic & general relativistic Euler and Navier-Stokes equations
 - Dynamics of the expanding universe
 - Basic concepts in modern cosmology:


Black holes, dark matter, dark energy, inflation

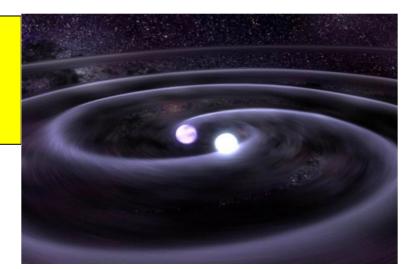
C5: Numerical aspects of relativistic Cosmology

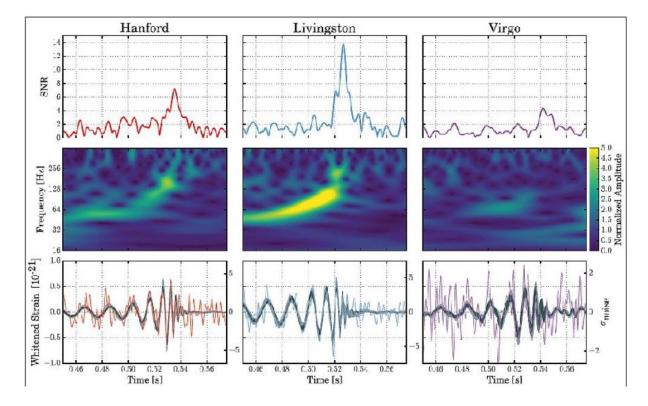
C6: Projects:


Numerical methods, programming and computational techniques


I. The propagation of ultra-relativistic shock fronts (1D)

II. Studying the internal structure of neutron stars


> Exploring the internal structure of neutron stars by solving



Project-3: The story of the neutron star merger in

GW170817

Addition projects:

I.	Hadronization of the big bang's progenitor:			
	Numerical simulation			
II.	T	Theory:		
	a.	Glitch	phenomena in pulsars & Superfluidity	
			rivation of the UNIMOUN model	

Literature:

1. Hirsch,C., Numerical Computation of Internal and External Flows. Vol. I and II.

John Wiley & Sons, Chichester, 1990

- 2. Caminzind, M., "Compact Objects in Astrophysics", Springer-Verlag, 2007
- 3. Hobson et al., "General Relativity"
- 4. Hujeirat, A.A.; A collection of scientific articles & reports

Lecture notes are downloadable weekly from:

(http://www1.iwr.uni-heidelberg.de/groups/compastro/home/)

Exercises should be answered and submitted timely, namely: before the start of the subsequent lecture