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Levels of interconnection

Telecommunications Campus networks LANs

10,000 km 1000 km 1 km 100 m
interconnect distance

Optics currently dominates for long distance interconnects
Increasingly, optics is used in local area network applications
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Levels of interconnection
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Electrical signaling within computers is encountering severe limitations -
what can help at these << Imm length scales?



What is a quantum computer?

A quantum computer is a machine that performs
calculations based on the laws of quantum
mechanics, which is the behavior of particles at the
sub-atomic level.



Classical information Quantum information

of string of qubits

Manipulation of (qu)bits (computation, dynamics)
Bit transformations (function computation)

All functions can be computed reversibly. Unitary operations U (reversible)
Qubit states cannot be |v) |O) ) |4))
Bit states can be copied. copied, except for
orthogonal states (p|p)? = (o)

Transmission of (qu)bits (communication, dynamics)

Readout of (qu)bits (measurement)

[4) = «|0) + 5]1)
po = |a|® = |(0]4)|?
p1 = |81* = [(1|¥)]?

Distinguishability of bit states Quantum states are not

distinguishable, except for
orthogonal states
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Quantum processors connected by spin chains

Realization is based on spin chain of the permanent fermions (spin-
1/2 particles) with nearest-neighbour interaction: | 0> - spin down,
| 1> - spin up.

Quantum processor A Quantum Processor B

}H'H

»

,cue-n«e-T

%
“l
”
j &




" J
Spin chains - recent development

PHYSICAL REVIEW LETTERS week ending

VOLUME 91, NUMBER 20 14 NOWEMBER 2003

Quantum Communication through an Unmodulated Spin Chain

Sougato Bose
Institute for Quartum Information, MC J07-81, California Institute of Technology, Pavadena, Califormia 91125-8100, U7SA
and Department of Phvsicy and Astronomy, University College London, Gower Street, London WCIE 6BT, United Kingdom
(Received 15 January 2003; revised manuscript received 24 June 2003; published 10 November 2003)
We propose a scheme for using an unmodulated and unmeasured spin chain as a channel for short
distance quantum communications. The state to be transmitted is placed on one spin of the chain and
received later on a distant spin with some fidelity. We first obtain simple expressions for the fidelity of
quantum state transfer and the amount of entanglement sharable between any two sites of an arbitrary
Heisenberg ferromagnet using our scheme. We then apply this to the realizable case of an open ended
chain with nearest neighbor interactions. The fidelity of quantum state transfer is obtained as an inverse
discrete cosine transform and as a Bessel function series. We find that in a reasonable time, a qubit can
be directly transmitted with better than classical fidelity across the full length of chains of up to B0
spins. Moreover, our channel allows distillable entanglement to be shared over arbitrary distances.

DOL: 101103/ PhysRevLett. 91207901 PACS numbers: 03.67.Hk, 05.50.4g, 3280.1Lg

721 times cited

according to Thomson Reuters Web of Science database
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Spin chains - recent development

~~k . d
VOLUME 92, NUMBER 18 PHYSICAL REVIEW LETTERS ;‘ILMLA‘(EHQEI?JE:.L

Perfect State Transfer in Quantum Spin Networks

Matthias C‘.hrislzuu:ll,"*= Nilanjana D.'|.tm,2 Artur Ekve:rt,"3 and Andrew J. Landah1*®
'Centre Jor Quantum Computation, Centre for Mathematical Sciences, DAMTE University of Cambridge,
Wilherforce Road, Cambridge CB3 OWA, United Kingdom
Statistical Laboratory, Centre for Mathematical Science, Univeryitv of Cambridge,
Wilberforce Road, Cambridge CB3 OWE, United Kingdom
':D{’J'?'t.' rtment of Physics, National Universitv of Singapore, Singapore 117 542, Singapore
Center Jor Bity and Atoms, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
SHP Labs, Palo Alto, California 94304-1126, USA
(Received 22 September 2003; published 4 May 2004)

We propose a class of qubit networks that admit the perfect state transfer of any quantum state in a
fixed period of time. Unlike many other schemes for quantum computation and communication, these

589 times cited

according to Thomson Reuters Web of Science database
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Spin chains - recent development
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PRL 93. 230502 (2004) PHYSICAL REVIEW LETTERS 3 DECEMBER 2004

Mirror Inversion of Quantum States in Linear Registers

Claudio Albanese,"** Matthias Christandl,™" Nilanjana Datta.** and Artur Ekert™>%
If}‘t’_.rx. riment of Mathematics, Imperial College, London, SW7 2AZ, United Kingdom
2] department of Mathematics, National Universitv of Singapore, Singapore 117543, Singapore
*Centre Jor Quantum Computation, DAMTE University of Cambridge, Cambridge CB3 OWA, United Kingdom
YStatistical Laboratory, DPMMS, University of Cambridge, Cambridge CB3 OWE, United Kingdom
3] Yepartment of Physics, National University of Singapore, Singapore 117542, Singapore
(Received 6 May 2004, published 30 November 2004)

Transfer of data in linear quantum registers can be significantly simplified with preengineered but not
dynamically controlled interqubit couplings. We show how to implement a mirror inversion of the state
of the register in each excitation subspace with respect to the center of the register. Our construction is
especially appealing as it requires no dynamical control over individual interqubit interactions. If,
however, individual control of the interactions is available then the mirror inversion operation can be
performed on any substring of qubits in the register. In this case, a sequence of mirror inversions can
generate any permutation of a quantum state of the involved qubits.

DO 101103/ PhysRevLett. 93.230502 PACS numbers: 03.67.Hk, 05.50.+q

161 times cited

according to Thomson Reuters Web of Science database



Spin chains with nearest-neighbor interaction

Hamiltonian of spin chain of (N + 1) electrons coupled via the nearest-
neighbour interaction is the following

Hamiltonian:

N—=1 N
-1 1
— Yy y
H =g ;_n: Ji (0% - ofp1 +0pyy - on) + 5 E_n hy (of + 1)

Ji. - coupling strength, h; - Zeeman energy.

Pauli matrices:

- ((11) ” (u —a') N (1 n)
o : o~ — 3 o =
1 0/ i 0 ) 0 —1
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Askey scheme of the orthogonal polynomials

Racah aF5(4)
Hahn Dual Hahn 3F(3)
Meixner Krawtchouk :F(2)
Charlier Fill) faR(1)

* R. Koekoek, P.A. Lesky, R. Swarttouw,
Hypergeometric Orthogonal Polynomials and Their
g-Analogues, Springer (2010)




Spin chains - evolution in time

Unitary time evolution operator:U(t) = exp(—itH)

“State sender” located at the site s, “State receiver” located at
the site r

When t=0, the system located at the sites S

Transition amplitude (or correlation function)

£.(8) = (rlU(D)]s) = (++++IT:+::H r}\HH-H:::)

Compute explicit expression f;- (t)

N f N
frs(t) = () Unprlexp(—itH) Y Usigs) =Y UyUsje™™
k=0 j=0 j=0



Spin chains - simplest example of
analytical solution

> hy =0and J,. =1|

(1T 2 o (DT
rJ.-:2CGS('N_;:] J U-‘j_ \..-’N.ESm( N+2 )

=

(r+1)(j+1)7 . s+Lij+1)m
Z 25”1( JF'IE:'[-I;—E } )sm({ ﬁd}r_fiz ] )

X exp ( 2it cos ({*’Ji};))




Simulation
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Spin chains - another example -
Krawtchouk polynomials

. . |m=N/2and J = L/ k+ 1)(N—K)|

(i =j(i=0.1....N) Uy = Ki(j) ~ 2F1 (—_f.ﬁ?‘; !

fros(t) = V’!(N) (’D(mwsu —z)™"(1 = p+ pz)"~

r

x 2k (_Eﬂ:s; p(l—P_)fl_z)g)i

fuot) = (VR p)) (1 —e)"

fnvo(m) =1 p=1/2.




Simulation
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Spin chains - another example -
g-Krawtchouk polynomials

Jacobl matrix elements

A d A +C,
Jn — .+1'.| hﬂ — . .5
1 — q d'n | L — q
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Hamiltonian of spin chain (N+1)
electrons

N-1

7 + +

H = z./k(ak Ap+1 T A1)
k=0

Pair of new recurrence relations for
Racah polynomials

(x+a+2)(x+7+6+ I}Er},_ Wt Dx—a+y+9o) Ry(A(x);a+1,p—1,7,0)
2+ y+6+2 x+y+0+2

— (@+ DRy (A (x+1);,B, 7.8 - 1),

(B—y—x—1)(x+8) (x+y+1)(x+p+8) , | )
l 2x+y+0+1 T 2x+y+6+1 € :IR“(‘H"{I:I'H'-PB.*T-E 1)

_(n+a+1)(n+p) ,
— o+ 1 R”(l{-l’—l—l:I..E'-'.’—I—l_.,B—l._’j"._EII.
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Racah polynomials

Ry (A(z); e, 3,7.6)

P —n.n+a+8+1,—z,x+v+5+1 .
:4- : .
; a+1,8+64+1,7+1 |

AMr)=xz(x+~v+0+1), n=012....m
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Coupling strength

G+ Dm— B @B,8); k- odd
V(e +2a+2)(m—k+28)g(6);  k—even

(k—2a+26 —m)(k+20+26—1)
2k+26—m—-—1)2k+26—m+1)

fa,B,8) =

(k —m+ 28 — D (k + 26)
Rk+26—m—-1)Q2k+25—m+ 1)

g(6) =



During computations, it is necessary to take into account
satisfaction of the following three cases, under which the

Racah polynomials hold finite-discrete orthogonality
relation

(=B)my+06+2)m

(_ﬁ+y+1)m(5+1)m,
(x+8)m(y+6+2)m,

(—a+y+8+1) (6+1)’
(a+B+2)m(—0)m
(@=6+1)m(B+D)m’

ifa+1=—-m,

iff+o+1=—-m,

ify+1=-m.



Transition from one end of the chain (s = 0) to the final
end of thechain(r = N =2m + 1), t=T =mn/2;

Time evolution correlation function:

(a—6+2),,(a+6+1),
(5)m(1 _ 5)m

fuo(m/2) =
N
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Conclusion

» Time-dependent correlation function becomes equal to 1, is
called as perfect state transfer. One can easily check that
expression of the correlation function, obtained in this work,
never becomes equal to 1.

» Seclection of nearest-neighbour coupling parameters Jp,
corresponding to pair of the recurrence relations for the
Racah polynomials, one can assess only the case of the
qubit transfer with the high fidelity. This statement 1s very
important, because, it allows observing the law of the
breakdown of the perfect qubit transfer under the certain
complication of the nearest-neighbour interaction parameter.

This work was supported by the Science Development Foundation
under the President of the Republic of Azerbaijan — Grant Nr EIF-
KETPL-2-2015-1(25)-56/01/1.
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